首站-论文投稿智能助手
典型文献
A novel superhard boron nitride polymorph with monoclinic symmetry
文献摘要:
In this work,a new superhard material named Pm BN is proposed.The structural properties,stability,mechanical properties,mechanical anisotropy properties,and electronic properties of Pm BN are studied in this work.Pm BN is dynamically and mechanically stable,the relative enthalpy of Pm BN is greater than that of c-BN,and in this respect,and it is more favorable than that of T-B3N3,T-B7N7,tP24 BN,Imm2 BN,NiAs BN,and rocksalt BN.The Young's modulus,bulk modulus,and shear modulus of Pm BN are 327 GPa,331 GPa,and 738 GPa,respectively,and according to Chen's model,Pm BN is a novel superhard material.Compared with its original structure,the mechanical anisotropy of Young's modulus of Pm BN is larger than that of C14 carbon.Finally,the calculations of the electronic energy band structure show that Pm BN is a semiconductor material with not only a wide band gap but also an indirect band gap.
文献关键词:
作者姓名:
Qing-Yang Fan;Chen-Si Li;Ying-Bo Zhao;Yan-Xing Song;Si-Ning Yun
作者机构:
College of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China;Shaanxi Key Laboratory of Nano Materials and Technology,Xi'an 710055,China;School of Mechanical and Electrical Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China;Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi'an 710071,China;Functional Materials Laboratory(FML),School of Materials Science and Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China
文献出处:
引用格式:
[1]Qing-Yang Fan;Chen-Si Li;Ying-Bo Zhao;Yan-Xing Song;Si-Ning Yun-.A novel superhard boron nitride polymorph with monoclinic symmetry)[J].理论物理,2022(06):159-167
A类:
superhard,B3N3,B7N7,tP24,Imm2,NiAs,rocksalt
B类:
novel,boron,nitride,polymorph,monoclinic,symmetry,In,this,work,new,material,named,Pm,BN,proposed,structural,properties,stability,anisotropy,electronic,studied,dynamically,mechanically,stable,relative,enthalpy,greater,than,that,more,favorable,Young,modulus,bulk,shear,GPa,respectively,according,Chen,model,Compared,its,original,structure,larger,C14,carbon,Finally,calculations,energy,band,show,semiconductor,not,only,wide,gap,but,also,indirect
AB值:
0.40301
相似文献
Nacre-liked material with tough and post-tunable mechanical properties
Zhengyi Mao;Mengke Huo;Fucong Lyu;Yongsen Zhou;Yu Bu;Lei Wan;Lulu Pan;Jie Pan;Hui Liu;Jian Lu1.-Department of Mechanical Engineering,City University of Hong Kong,Tat Chee Avenue,Kowloon,Hong Kong,China;CityU-Shenzhen Futian Research Institute,No.3,Binglang Road,Futian District,Shenzhen 518000,China;Department of Material Science Engineering,City University of Hong Kong,Tat Chee Avenue,Kowloon,Hong Kong,China;Hong Kong Branch of National Precious Metals Material Engineering Research Center,City University of Hong Kong,Hong Kong,China;Centre for Advanced Structural Materials,City University of Hong Kong Shenzhen Research Institute,Greater Bay Joint Division,Shenyang National Laboratory for Materials Science,Shenzhen 518057,China;Laboratory of Nanomaterials&Nanomechanics,City University of Hong Kong,Hong Kong,China
Vacuum wetting of Ag/TA2 to develop a novel micron porous Ti with significant biocompatibility and antibacterial activity
Guanpeng Liu;Yulong Li;Ming Yan;Jicai Feng;Jian Cao;Min Lei;Quanwen Liu;Xiaowu Hu;Wenqin Wang;Xuewen Li-Key Lab for Robot and Welding Automation ofJJiangxi Province,Mechanical and Electrical Engineering School,Nanchang University,Nanchang 330031,China;Jiangxi Provincial Key Laboratory of Interdisciplinary Science,Nanchang University,Nanchang 330031,China;Department of Materials Science and Engineering and Shenzhen Key Laboratory for Additive Manufacturing of High-Performance Materials,Southern University of Science and Technology,Shenzhen 518055,China;State Key Lab of Advanced Welding and Joining,Harbin Institute of Technology,Harbin 150001,China;The National Engineering Research Center for Bioengineering Drugs and the Technologies,Institute of Translational Medicine,Nanchang University,Nanchang 330031,China;The Engineering Training Center of Nanchang University,Mechanical and Electrical Engineering School,Nanchang University.Nanchang 330031,China
Microstructure evolution and deformation mechanism of α+β dual-phase Ti-xNb-yTa-2Zr alloys with high performance
Ting Zhang;Daixiu Wei;Eryi Lu;Wen Wang;Kuaishe Wang;Xiaoqing Li;Lai-Chang Zhang;Hidemi Kato;Weijie Lu;Liqiang Wang-State Key Laboratory of Metal Matrix Composites,School of Material Science and Engineering,Shanghai Jiao Tong University,Shanghai,200240,China;School of Metallurgical Engineering,Xi'an University of Architecture and Technology,Xi'an,710055,China;Institute for Materials Research,Tohoku University,2-1-1 Katahira,Sendai,Miyagi,980-8577,Japan;Department of Stomatology,Renji Hospital,School of Medicine,Shanghai Jiao Tong University,Shanghai,200127,China;Department of Materials Science and Engineering,KTH-Royal Institute of Technology,10044,Stockholm,Sweden;School of Engineering,Edith Cowan University,270 Joondalup Drive,Joondalup,Perth,WA 6027,Australia
Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization
Xia Cai;Fengcai Liu;Anran Yu;Jiajun Qin;Mohammad Hatamvand;Irfan Ahmed;Jiayan Luo;Yiming Zhang;Hao Zhang;Yiqiang Zhan-School of Information Science and Technology,Fudan University,Shanghai 200433,China;College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China;Center of Micro-Nano System,Fudan University,Shanghai 200433,China;Department of Physics,Chemistry and Biology,Link?ping University,Link?ping SE-58183,Sweden;Key Laboratory of Micro and Nano Photonic Structures and Department of Optical Science and Engineering,Fudan University,Shanghai 200433,China;Yiwu Research Institute of Fudan University,Chengbei Road,Yiwu City,Zhejiang 322000,China
Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization
Xia Cai;Fengcai Liu;Anran Yu;Jiajun Qin;Mohammad Hatamvand;Irfan Ahmed;Jiayan Luo;Yiming Zhang;Hao Zhang;Yiqiang Zhan-School of Information Science and Technology,Fudan University,Shanghai 200433,China;College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China;Center of Micro-Nano System,Fudan University,Shanghai 200433,China;Department of Physics,Chemistry and Biology,Link?ping University,Link?ping SE-58183,Sweden;Key Laboratory of Micro and Nano Photonic Structures and Department of Optical Science and Engineering,Fudan University,Shanghai 200433,China;Yiwu Research Institute of Fudan University,Chengbei Road,Yiwu City,Zhejiang 322000,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。