首站-论文投稿智能助手
典型文献
基于线性注意力机制的单样本生成对抗网络研究
文献摘要:
目前,使用单样本训练生成对抗网络已经成为研究人员关注的重点.但是,网络模型不容易收敛,生成的图像结构易崩塌,训练速度慢等问题依旧亟待解决.研究人员提出在生成对抗网络中使用自注意力模型用以获取样本更大范围的结构,提高生成图像的质量.但是,传统的卷积自注意力模型由于注意力图谱中的信息冗余,容易造成计算资源浪费.提出了一种新的线性注意力模型,在该模型中使用了双重归一化方法来缓解注意力模型对输入特征敏感的问题,并且基于该模型搭建了一种新的单样本生成对抗网络模型.此外,模型还使用了残差网络和光谱归一化方法用于稳定训练,降低了发生崩塌的风险.实验结果表明,相较于使用已有的网络结构,该模型具有训练速度快,生成图像的分辨率高且评价指标改善明显等特点.
文献关键词:
生成对抗网络;单样本;线性注意力模型;自注意力机制;光谱归一化
作者姓名:
陈曦;赵红东;杨东旭;徐柯南;任星霖;封慧杰
作者机构:
河北工业大学电子信息工程学院,天津 300401;光电信息控制和安全技术重点实验室,天津 300308
引用格式:
[1]陈曦;赵红东;杨东旭;徐柯南;任星霖;封慧杰-.基于线性注意力机制的单样本生成对抗网络研究)[J].计算机工程与科学,2022(11):2056-2063
A类:
卷积自注意力,线性注意力模型
B类:
单样本,样本生成,生成对抗网络,样本训练,崩塌,训练速度,速度慢,自注意力模型,成图,注意力图,信息冗余,计算资源,资源浪费,重归,归一化方法,输入特征,模型搭建,残差网络,光谱归一化,稳定训练,分辨率高,指标改善,自注意力机制
AB值:
0.242538
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。