首站-论文投稿智能助手
典型文献
ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS
文献摘要:
This article studies a posteriori error analysis of fully discrete finite element approxima-tions for semilinear parabolic optimal control problems.Based on elliptic reconstruction approach introduced earlier by Makridakis and Nochetto[25],a residual based a poste-riori error estimators for the state,co-state and control variables are derived.The space discretization of the state and co-state variables is done by using the piecewise linear and continuous finite elements,whereas the piecewise constant functions are employed for the control variable.The temporal discretization is based on the backward Euler method.We derive a posteriori error estimates for the state,co-state and control variables in the L∞(0,T;L2(Ω))-norm.Finally,a numerical experiment is performed to illustrate the per-formance of the derived estimators.
文献关键词:
作者姓名:
Ram Manohar;Rajen Kumar Sinha
作者机构:
Department of Mathematics,Indian Institute of Technology Guwahati,Guwahati-781039,India
引用格式:
[1]Ram Manohar;Rajen Kumar Sinha-.ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS)[J].计算数学(英文版),2022(02):147-176
A类:
ELLIPTIC,RECONSTRUCTION,POSTERIORI,ERROR,FULLY,DISCRETE,SEMILINEAR,PARABOLIC,OPTIMAL,PROBLEMS,Makridakis,Nochetto,poste,riori
B类:
AND,ESTIMATES,FOR,CONTROL,This,article,studies,posteriori,error,analysis,fully,discrete,finite,approxima,semilinear,parabolic,optimal,control,problems,Based,elliptic,reconstruction,approach,introduced,earlier,by,residual,estimators,state,variables,are,derived,space,discretization,done,using,piecewise,continuous,elements,whereas,constant,functions,employed,temporal,backward,Euler,method,We,estimates,L2,norm,Finally,numerical,experiment,performed,illustrate,formance
AB值:
0.455511
相似文献
O(t-β)-SYNCHRONIZATION AND ASYMPTOTIC SYNCHRONIZATION OF DELAYED FRACTIONAL ORDER NEURAL NETWORKS
Anbalagan PRATAP;Ramachandran RAJA;Jinde CAO;Chuangxia HUANG;Jehad ALZABUT;Ovidiu BAGDASAR-Department of Mathematics,Alagappa University,Karaikudi 630004,India;Ramanujan Centre for Higher Mathematics,Alagappa University,Karaikudi 630004,India;School of Mathematics,Southeast University,Nanjing 211189,China;Yonsei Frontier Lab,Yonsei University,Seoul 03722,South Korea;Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,Changsha University of Science and Technology,Changsha 410114,China;Department of Mathematics and General Sciences,Prince Sultan University,Riyadh 12435,Saudi Arabia;Department of Electronics,Computing and Mathematics,University of Derby,United Kingdom
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。