首站-论文投稿智能助手
典型文献
Metasurface for oscillatory spin splitting along the optical path
文献摘要:
Spin splitting of light originates from the interplay between the polarization and spatial degrees of freedom as a fundamental constituent of the emerging spin photonics, providing a prominent pathway for manipulating photon spin and developing exceptional photonic devices. However, previously relevant devices were mainly designed for routing monotonous spin splitting of light. Here, we realize an oscillatory spin splitting of light via metasurface with two channel Pancharatnam–Berry phases. For the incidence of a linearly polarized light, the concomitant phases arising from opposite spin states transition within pathways of the metasurface induce lateral spin splitting of light with alternately changed transport direction during beam guiding. We demonstrate the invariance of this phenomenon with an analogous gauge transformation. This work provides a new insight on steering the photon spin and is expected to explore a novel guiding mechanism of relativistic spinning particles, as well as applications of optical trapping and chirality sorting.
文献关键词:
作者姓名:
Yu Li;Xinhao Fan;Xuyue Guo;Yi Zhang;Sheng Liu;Bingyan Wei;Dandan Wen;Peng Li;Jianlin Zhao
作者机构:
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China;Xi’an Ming De Institute of Technology, Xi’an 710124, China;Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland;e-mail: pengli@nwpu.edu.cn;e-mail: jlzhao@nwpu.edu.cn
引用格式:
[1]Yu Li;Xinhao Fan;Xuyue Guo;Yi Zhang;Sheng Liu;Bingyan Wei;Dandan Wen;Peng Li;Jianlin Zhao-.Metasurface for oscillatory spin splitting along the optical path)[J].光子学研究(英文),2022(09):B7
A类:
B类:
Metasurface,oscillatory,splitting,along,optical,Spin,light,originates,from,interplay,between,polarization,spatial,degrees,freedom,fundamental,constituent,emerging,photonics,providing,prominent,manipulating,developing,exceptional,devices,However,previously,relevant,were,mainly,designed,routing,monotonous,Here,realize,via,metasurface,two,channel,Pancharatnam,Berry,phases,For,incidence,linearly,polarized,concomitant,arising,opposite,states,transition,within,pathways,induce,lateral,alternately,changed,transport,direction,during,beam,guiding,We,demonstrate,invariance,this,phenomenon,analogous,gauge,transformation,This,work,provides,new,insight,steering,expected,explore,novel,mechanism,relativistic,spinning,particles,well,applications,trapping,chirality,sorting
AB值:
0.661334
相似文献
Boosting photocatalytic activity through tuning electron spin states and external magnetic fields
Chengxiao Peng;Wenjuan Fan;Qian Li;Wenna Han;Xuefeng Chen;Guangbiao Zhang;Yuli Yan;Qinfen Gu;Chao Wang;Huarong Zhang;Peiyu Zhang-Institute for Computational Materials Science,School of Physics and Electronics,Henan University,Kaifeng 475004,China;International Joint Research Laboratory of New Energy Materials and Devices of Henan Province,Kaifeng 475004,China;National Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,China;State Key Laboratory of Advanced Special Steels,Shanghai Key Laboratory of Advanced Ferrometallurgy,School of Materials Science and Engineering,Shanghai University,Shanghai 200444,China;Australian Synchrotron,ANSTO,800 Blackburn Rd,Clayton,3168,VIC,Australia
A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler
Tongyao Zhang;Hanwen Wang;Xiuxin Xia;Ning Yan;Xuanzhe Sha;Jinqiang Huang;Kenji Watanabe;Takashi Taniguchi;Mengjian Zhu;Lei Wang;Jiantou Gao;Xilong Liang;Chengbing Qin;Liantuan Xiao;Dongming Sun;Jing Zhang;Zheng Han;Xiaoxi Li-State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics,Shanxi University,Taiyuan 030006,China;Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China;Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;School of Material Science and Engineering,University of Science and Technology of China,Anhui 230026,China;Research Center for Functional Materials,National Institute for Materials Science,1-1 Namiki,Tsukuba 305-0044,Japan;International Center for Materials Nanoarchitectonics,National Institute for Materials Science,1-1 Namiki,Tsukuba 305-0044,Japan;College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China;The Key Laboratory of Science and Technology on Silicon Devices,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China;The University of Chinese Academy of Sciences,Beijing 100029,China;State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Laser Spectroscopy,Shanxi University,Taiyuan 030006,China
Chirality-switchable acoustic vortex emission via non-Hermitian selective excitation at an exceptional point
Tuo Liu;Shuowei An;Zhongming Gu;Shanjun Liang;He Gao;Guancong Ma;Jie Zhu-Key Laboratory of Noise and Vibration Research,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong,China;The Hong Kong Polytechnic University Shenzhen Research Institute,Shenzhen 518057,China;Institute of Acoustics,School of Physics Science and Engineering,Tongji University,Shanghai 200092,China;Division of Science,Engineering and Health Studies,College of Professional and Continuing Education,The Hong Kong Polytechnic University,Hong Kong,China;Department of Physics,Hong Kong Baptist University,Hong Kong,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。