首站-论文投稿智能助手
典型文献
基于多粒度特征融合网络的行人重识别
文献摘要:
针对复杂环境下行人细节特征不明显、姿态多变等情况造成的行人重识别(person-reidentifi-cation,ReID)算法精度不高 的问题,提出 了一种基于多粒度特征提取与特征融合的 ReID网络.首先,在主干网络输入和输出端采用两种粒度的划分方式获取图像的局部特征.其次,引入空间变换网络(spatial transformation network,STN)对输入全局图像进行空间对齐,对局部图像进行特征增强.最后,采用局部特征融合的方式来挖掘特征之间的关联信息,提升模型对相似样本的识别能力.实验结果表明,所提方法在多个数据集上均取得了良好的识别效果.在Market-1501数据集上的平均查准率(mean average precision,mAP)和首次查准率(Rank-1)分别为84.87%和94.45%,通过和目前主流的ReID算法相比,本文所提方法具有更优的识别效果.
文献关键词:
行人重识别(ReID);姿态;局部特征;空间变换网络(STN);特征融合
作者姓名:
张勃兴;张寿明;钟震宇
作者机构:
昆明理工大学信息工程与自动化学院,云南昆明650504;广东省科学院智能制造研究所广东省现代控制技术重点实验室,广东广州510095
文献出处:
引用格式:
[1]张勃兴;张寿明;钟震宇-.基于多粒度特征融合网络的行人重识别)[J].光电子·激光,2022(09):977-983
A类:
reidentifi,多粒度特征提取
B类:
多粒度特征融合,特征融合网络,行人重识别,复杂环境,细节特征,person,cation,ReID,主干网络,输出端,局部特征,空间变换网络,spatial,transformation,network,STN,全局图,行空,对齐,对局,局部图,特征增强,联信,识别能力,Market,查准率,mean,average,precision,mAP,Rank
AB值:
0.355134
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。