首站-论文投稿智能助手
典型文献
The Puzzles in Fast Charging of Li-Ion Batteries
文献摘要:
Fast charging of Li-ion batteries has become a grand challenge for the widespread adoption of electric vehicles and the consumer's conve-nience of portable power tools and mobile electronic devices.In view of the battery cell's performance,fast charging results in a decrease in charge acceptance and accelerated degradation in performances such as energy density and power capability.The former is an issue of the cell's reaction kinetics,involving Li+ion transport in the electrolyte and Li+ion diffusion in the solid-state electrodes,while the latter relates to the materials'degradation induced by fast charging.[1-5]
文献关键词:
作者姓名:
Sheng Shui Zhang
作者机构:
Battery Science Branch,FCDD-RLS-CE,Sensors and Electron Devices Directorate,U.S.Army Research Laboratory,Adelphi MD 20783-1138,USA
引用格式:
[1]Sheng Shui Zhang-.The Puzzles in Fast Charging of Li-Ion Batteries)[J].能源与环境材料(英文),2022(04):1005-1007
A类:
nience,Li+ion, materials
B类:
Puzzles,Fast,Charging,Ion,Batteries,charging,batteries,has,become,grand,challenge,widespread,adoption,electric,vehicles,consumer,conve,portable,power,tools,mobile,electronic,devices,In,view,battery,cell,fast,results,decrease,charge,acceptance,accelerated,degradation,performances,such,energy,density,capability,former,issue,reaction,kinetics,involving,transport,electrolyte,diffusion,solid,state,electrodes,while,latter,relates,induced,by
AB值:
0.638335
相似文献
Tailoring Nitrogen Terminals on MXene Enables Fast Charging and Stable Cycling Na-Ion Batteries at Low Temperature
Yang Xia;Lanfang Que;Fuda Yu;Liang Deng;Zhenjin Liang;Yunshan Jiang;Meiyan Sun;Lei Zhao;Zhenbo Wang-MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,State Key Lab of Urban Water Resources and Environment,School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,People's Republic of China;Engineering Research Center of Environment-Friendly Functional Materials,Ministry of Education,Institute of Materials Physical Chemistry,Huaqiao University,Xiamen 361021,People's Republic of China;The Institute for Advanced Studies,Wuhan University,Wuhan 430072,People's Republic of China;College of Materials Science and Engineering,Shenzhen University,Shenzhen 518071,People's Republic of China
Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode
Kui Lin;Xiaofu Xu;Xianying Qin;Ming Liu;Liang Zhao;Zijin Yang;Qi Liu;Yonghuang Ye;Guohua Chen;Feiyu Kang;Baohua Li-Shenzhen Key Laboratory on Power Battery Safety Research and Shenzhen Geim Graphene Center,Tsinghua Shenzhen International Graduate School,Shenzhen 518055,People's Republic of China;School of Materials Science and Engineering,Tsinghua University,Beijing 100084,People's Republic of China;Contemporary Amperex Technology Co.Ltd.,Ningde 352100,People's Republic of China;Shenzhen Graphene Innovation Center Co.Ltd.,Shenzhen 518055,People's Republic of China;College of Materials Science and Engineering,Hunan University,Changsha 410082,People's Republic of China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong 999077,People's Republic of China
Elastic Buffering Layer on CuS Enabling High-Rate and Long-Life Sodium-Ion Storage
Yuanhua Xiao;Feng Yue;Ziqing Wen;Ya Shen;Dangcheng Su;Huazhang Guo;Xianhong Rui;Liming Zhou;Shaoming Fang;Yan Yu-Key Laboratory of Surface and Interface Science and Technology,Zhengzhou University of Light Industry,Zhengzhou 450002,People's Republic of China;Institute of Nanochemistry and Nanobiology,School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,People's Republic of China;Institute School of Materials and Energy,Guangdong University of Technology,Guangzhou 510006,People's Republic of China;Hefei National Research Center for Physical Sciences at the Microscale,Department of Materials Science and Engineering,National Synchrotron Radiation Laboratory,CAS Key Laboratory of Materials for Energy Conversion,University of Science and Technology of China.Hefei,Anhui 230026,People's Republic of China
Quasi-Solid-State Ion-Conducting Arrays Composite Electrolytes with Fast Ion Transport Vertical-Aligned Interfaces for All-Weather Practical Lithium-Metal Batteries
Xinyang Li;Yong Wang;Kai Xi;Wei Yu;Jie Feng;Guoxin Gao;Hu Wu;Qiu Jiang;Amr Abdelkader;Weibo Hua;Guiming Zhong;Shujiang Ding-School of Chemistry,Xi'an Key Laboratory of Sustainable Energy Materials Chemistry,State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University,Xi'an 710049,People's Republic of China;State Key Laboratory for Mechanical Behaviour of Materials,Xi'an Jiaotong University,Xi'an 710049,People's Republic of China;State Key Laboratory of Organic-inorganic Composites,Beijing University of Chemical Technology,Beijing 100029,People's Republic of China;Yangtze Delta Region Institute(Huzhou),University of Electronic Science and Technology of China,Huzhou,Zhejiang 313001,People's Republic of China;School of Materials and Energy,University of Electronic Science and Technology of China,Chengdu 610054,People's Republic of China;Faculty of Science and Technology,Bournemouth University,Talbot Campus,Fern Barrow,Poole BH12 5BB,UK;Institute for Applied Materials-Energy Storage Systems(IAM-ESS),Karlsruhe Institute of Technology(KIT),76344 Eggenstein-Leopoldshafen,Germany;School of Chemical Engineering and Technology,Xi'an Jiaotong University,Xi'an,Shaanxi 710049,People's Republic of China;Laboratory of Advanced Spectroelectrochemsitry and Li-ion Batteries,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,People's Republic of China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。