首站-论文投稿智能助手
典型文献
Tailoring Nitrogen Terminals on MXene Enables Fast Charging and Stable Cycling Na-Ion Batteries at Low Temperature
文献摘要:
Sodium-ion batteries stand a chance of enabling fast charging ability and long lifespan while operating at low temperature(low-T).However,sluggish kinetics and aggravated dendrites present two major challenges for anodes to achieve the goal at low-T.Herein,we propose an interlayer confined strategy for tailoring nitrogen ter-minals on Ti3C2 MXene(Ti3C2-Nfunct)to address these issues.The introduction of nitrogen terminals endows Ti3C2-Nfunct with large interlayer space and charge redistribution,improved conductivity and sufficient adsorption sites for Na+,which improves the possibility of Ti3C2 for accommodating more Na atoms,further enhancing the Na+storage capability of Ti3C2.As revealed,Ti3C2-Nfunct not only possesses a lower Na-ion diffusion energy barrier and charge trans-fer activation energy,but also exhibits Na+-solvent co-intercalation behavior to circumvent a high de-solvation energy barrier at low-T.Besides,the solid electrolyte interface dominated by inorganic com-pounds is more beneficial for the Na+transfer at the electrode/electrolyte interface.Compared with of the unmodified sample,Ti3C2-Nfunct exhibits a twofold capacity(201 mAh g-1),fast-charging ability(18 min at 80%capacity retention),and great superiority in cycle life(80.9%@5000 cycles)at-25℃.When coupling with Na3V2(PO4)2F3 cathode,the Ti3C2-Nfunct//NVPF exhibits high energy density and cycle stability at-25℃.
文献关键词:
作者姓名:
Yang Xia;Lanfang Que;Fuda Yu;Liang Deng;Zhenjin Liang;Yunshan Jiang;Meiyan Sun;Lei Zhao;Zhenbo Wang
作者机构:
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,State Key Lab of Urban Water Resources and Environment,School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,People's Republic of China;Engineering Research Center of Environment-Friendly Functional Materials,Ministry of Education,Institute of Materials Physical Chemistry,Huaqiao University,Xiamen 361021,People's Republic of China;The Institute for Advanced Studies,Wuhan University,Wuhan 430072,People's Republic of China;College of Materials Science and Engineering,Shenzhen University,Shenzhen 518071,People's Republic of China
引用格式:
[1]Yang Xia;Lanfang Que;Fuda Yu;Liang Deng;Zhenjin Liang;Yunshan Jiang;Meiyan Sun;Lei Zhao;Zhenbo Wang-.Tailoring Nitrogen Terminals on MXene Enables Fast Charging and Stable Cycling Na-Ion Batteries at Low Temperature)[J].纳微快报(英文),2022(09):63-78
A类:
Nfunct,Na+transfer
B类:
Tailoring,Nitrogen,Terminals,MXene,Enables,Fast,Charging,Stable,Cycling,Ion,Batteries,Low,Temperature,Sodium,batteries,stand,chance,enabling,fast,charging,long,lifespan,while,operating,temperature,However,sluggish,kinetics,aggravated,dendrites,present,major,challenges,anodes,achieve,goal,Herein,propose,interlayer,confined,strategy,tailoring,nitrogen,Ti3C2,address,these,issues,introduction,terminals,endows,large,space,charge,redistribution,improved,conductivity,sufficient,adsorption,sites,which,improves,possibility,accommodating,more,atoms,further,enhancing,Na+storage,capability,revealed,not,only,possesses,lower,diffusion,energy,barrier,activation,also,exhibits,solvent,intercalation,behavior,circumvent,high,solvation,Besides,solid,electrolyte,interface,dominated,by,inorganic,pounds,beneficial,electrode,Compared,unmodified,sample,twofold,capacity,mAh,retention,great,superiority,cycles,When,coupling,Na3V2,PO4,2F3,cathode,NVPF,density,stability
AB值:
0.600786
相似文献
Modification of NASICON Electrolyte and Its Application in Real Na-Ion Cells
Qiangqiang Zhang;Quan Zhou;Yaxiang Lu;Yuanjun Shao;Yuruo Qi;Xingguo Qi;Guiming Zhong;Yong Yang;Liquan Chen;Yong-Sheng Hu-Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;HiNa Battery Technology Co.,Ltd.,Liyang 213300,China;Yangtze River Delta Physics Research Center Co.,Ltd.,Liyang 213300,China;Xiamen Institute of Rare-Earth Materials,Haixi Institutes,Chinese Academy of Sciences,Xiamen 361021,China;State Key Laboratory of Physical Chemistry of Solid Surfaces&Department of Chemistry,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China
Yolk-Shell P3-Type K0.5[Mn0.85Ni0.1Co0.05]O2:A Low-Cost Cathode for Potassium-Ion Batteries
Jiaxin Hao;Ke Xiong;Jiang Zhou;Apparao M.Rao;Xianyou Wang;Huan Liu;Bingan Lu-School of Physics and Electronics,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University,Changsha 410082,China;Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education,Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion,School of Chemistry,Xiangtan University,Xiangtan 411105,China;School of Materials Science and Engineering,Central South University,Changsha 410083,China;Department of Physics and Astronomy,Clemson Nanomaterials Institute,Clemson University,Clemson SC 29634,USA;College of Materials Science and Engineering,Hunan University of Science and Technology,Xiangtan 411201,China;Fujian Strait Research Institute of Industrial Graphene Technologies,Quanzhou 362000,China
Biomass Template Derived Boron/Oxygen Co-Doped Carbon Particles as Advanced Anodes for Potassium-Ion Batteries
Xueyu Lian;Zhongti Sun;Qingqing Mei;Yuyang Yi;Junhua Zhou;Mark H.Rümmeli;Jingyu Sun-College of Energy,Soochow Institute for Energy and Materials InnovationS(SIEMIS),Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province,Soochow University,Suzhou 215006,China;Beijing Graphene Institute(BGI),Beijing 100095,China;Department of Chemistry,University of Manchester,Manchester M13 9PL,UK Prof.M.H.Rümmeli;Leibniz Institute for Solid State and Materials Research Dresden,P.O.Box 270116,Dresden D-01171,Germany;Centre of Polymer and Carbon Materials,Polish Academy of Sciences,M.Curie-Sklodowskiej 34,Zabrze 41-819,Poland;Institute of Environmental Technology,VSB-Technical University of Ostrava,17.Listopadu 15,Ostrava 708 33,Czech Republic
Multidimensional Hybrid Architecture Encapsulating Cobalt Oxide Nanoparticles into Carbon Nanotube Branched Nitrogen-Doped Reduced Graphene Oxide Networks for Lithium-Sulfur Batteries
Jeong Seok Yeon;Young Hun Ko;Tae Ho Park;Hyunyoung Park;Jongsoon Kim;Ho Seok Park-School of Chemical Engineering,College of Engineering,Sungkyunkwan University,2066,Seobu-ro,Jangan-gu,Suwon-si Gyeonggi-do 440-746,Korea;Advanced Batteries Research Center,Korea Electronics Technology Institute,25,Saenari-ro,Bundang-gu,Seongnam-si Gyeonggi-do 13509,Korea;Department of Energy Science,Sungkyunkwan University,2066,Seobu-ro,Jangan-gu,Suwon-si Gyeonggi-do 440-746,Korea;Department of Health Sciences and Technology,Samsung Advanced Institute for Health Sciences and Technology(SAIHST),Sungkyunkwan University,2066,Seoburo,Jangan-gu,Suwon 440-746,South Korea
Self-Assembled VS4 Hierarch itectures with Enhanced Capacity and Stability for Sodium Storage
Siling Cheng;Kaitong Yao;Kunxiong Zheng;Qifei Li;Dong Chen;Yu Jiang;Weiling Liu;Yuezhan Feng;Xianhong Rui;Yan Yu-School of Materials and Energy,Guangdong University of Technology,Guangzhou 510006,China;Hefei National Laboratory for Physical Sciences at the Microscale,Department of Materials Science and Engineering,Key Laboratory of Materials for Energy Conversion,Chinese Academy of Sciences(CAS),University of Science and Technology of China,Hefei 230026,China;School of Materials Science and Engineering,Nanyang Technological University,Singapore 639798,Singapore;Key Laboratory of Materials Processing and Mold,Ministry of Education,Zhengzhou University,Zhengzhou 450002,China;Dalian National Laboratory for Clean Energy(DNL),Chinese Academy of Sciences(CAS),Dalian 116023,China
Bimetallic Metal-Organic Framework with High-Adsorption Capacity toward Lithium Polysulfides for Lithium-sulfur Batteries
Pengbiao Geng;Meng Du;Xiaotian Guo;Huan Pang;Ziqi Tian;Pierre Braunstein;Qiang Xu-School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225009,China;Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China;Laboratoire de Chimie de Coordination,CNRS,CHIMIE,UMR 7177,Université de Strasbourg,Strasbourg Cedex 67081,France;Department of Materials Science and Engineering and SUSTech Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology(SUSTech),Xueyuan Ave,Nanshan,Shenzhen 518055,China;Institute for Integrated Cell-Material Sciences(iCeMS),Kyoto University,Kyoto 606-8501,Japan
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。