首站-论文投稿智能助手
典型文献
Earth-Abundant CaCO3-Based Photocatalyst for Enhanced ROS Production,Toxic By-Product Suppression,and Efficient NO Removal
文献摘要:
Photoinduced reactive oxygen species(ROS)-based pollutant removal is one of the ideal solutions to achieve the conversion of solar energy into chemical energy and thus to address environmental pollution.Here,earth-abundant CaCO3-decorated g-C3N4(g-C3N4 labeled as CN,CaCO3-decorated g-C3N4 sample labeled as CN-CCO)has been constructed by a facile thermal polymerization method for safe and efficient photocatalytic NO removal.The decorated CaCO3 as"transit hub"extends the π bonds of CN to deviate from the planes and steers the random charge carriers,which thus provides extra active sites and expedites spatial charge separation to facilitate adsorption/activation of reactants and promote formation of ROS participating in the removal of pollutant.Furthermore,boosted generation of ROS regulates the photocatalytic NO oxidation pathway and thus increases the selectivity of products.NO prefers to be directly oxidized into final product(nitrate)rather than toxic intermediates(NO2),which is well demonstrated by theoretically simulated ROS-based reaction pathways and experimental characterization.The present work promotes the degradation of pollutant and simultaneously suppresses the formation of toxic by-product,which paves the way for ROS-based pollutant removal.
文献关键词:
作者姓名:
Wen Cui;Wenjia Yang;Peng Chen;Lvcun Chen;Jieyuan Li;Yanjuan Sun;Ying Zhou;Fan Dong
作者机构:
The Center of New Energy Materials and Technology,School of Materials Science and Engineering,Southwest Petroleum University,Chengdu 610500,China;Yangtze Delta Region Institute(Huzhou)&Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Huzhou 313000,China;Chongqing Key Laboratory of Catalysis and New Environmental Materials,College of Environment and Resources,Chongqing Technology and Business University,Chongqing 400067,China;State Centre for International Cooperation on Designer Low Carbon and Environmental Materials(CDLCEM),School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China
引用格式:
[1]Wen Cui;Wenjia Yang;Peng Chen;Lvcun Chen;Jieyuan Li;Yanjuan Sun;Ying Zhou;Fan Dong-.Earth-Abundant CaCO3-Based Photocatalyst for Enhanced ROS Production,Toxic By-Product Suppression,and Efficient NO Removal)[J].能源与环境材料(英文),2022(03):928-934
A类:
Photocatalyst
B类:
Earth,Abundant,CaCO3,Based,Enhanced,ROS,Production,Toxic,By,Suppression,Efficient,Removal,Photoinduced,reactive,oxygen,species,pollutant,removal,is,one,ideal,solutions,achieve,conversion,solar,energy,into,chemical,thus,address,environmental,pollution,Here,earth,abundant,decorated,C3N4,labeled,CN,sample,CCO,has,been,constructed,by,facile,thermal,polymerization,method,safe,efficient,photocatalytic,transit,hub,extends,bonds,deviate,from,planes,steers,random,charge,carriers,which,provides,extra,sites,expedites,spatial,separation,facilitate,adsorption,activation,reactants,formation,participating,Furthermore,boosted,generation,regulates,oxidation,increases,selectivity,products,prefers,directly,oxidized,final,nitrate,rather,than,toxic,intermediates,NO2,well,demonstrated,theoretically,simulated,reaction,pathways,experimental,characterization,present,work,promotes,degradation,simultaneously,suppresses,paves
AB值:
0.640008
相似文献
Monolayer Graphitic Carbon Nitride as Metal?Free Catalyst with Enhanced Performance in Photo? and Electro?Catalysis
Huiyan Piao;Goeun Choi;Xiaoyan Jin;Seong?Ju Hwang;Young Jae Song;Sung?Pyo Cho;Jin?Ho Choy-Intelligent Nanohybrid Materials Laboratory(INML),Institute of Tissue Regeneration Engineering(ITREN),Dankook University,Cheonan 31116,Republic of Korea;College of Science and Technology,Dankook University,Cheonan 31116,Republic of Korea;Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine,Dankook University,Cheonan 31116,Republic of Korea;Department of Materials Science and Engineering,College of Engineering,Yonsei University,Seoul 03722,Republic of Korea;SKKU Advanced Institute of Nanotechnology(SAINT),Sungkyunkwan University(SKKU),Suwon 440?746,Republic of Korea;Department of Nano Engineering,Sungkyunkwan University(SKKU),Suwon 440?746,Republic of Korea;National Center for Inter?University Research Facilities(NCIRF),Seoul National University,Seoul 08826,Republic of Korea;Graphene Research Center,Advanced Institute of Convergence Technology,Suwon 16229,Republic of Korea;Department of Pre?Medical Course,College of Medicine,Dankook University,Cheonan 31116,Republic of Korea;0Tokyo Tech World Research Hub Initiative(WRHI),Institute of Innovative Research,Tokyo Institute of Technology,Yokohama 226?8503,Japan
MOF-Like 3D Graphene-Based Catalytic Membrane Fabricated by One-Step Laser Scribing for Robust Water Purification and Green Energy Production
Xinyu Huang;Liheng Li;Shuaifei Zhao;Lei Tong;Zheng Li;Zhuiri Peng;Runfeng Lin;Li Zhou;Chang Peng;Kan-Hao Xue;Lijuan Chen;Gary J.Cheng;Zhu Xiong;Lei Ye-School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology,Wuhan 430074,People's Republic of China;Hubei Yangtze Memory Laboratories,Wuhan 430205,People's Republic of China;Institute for Frontier Materials,Deakin University,Geelong,VIC 3216,Australia;Key Laboratory of New Processing Technology for Nonferrous Metal and Materials(Ministry of Education),Guangxi Key Laboratory of Optical and Electronic Materials and Devices,College of Materials Science and Engineering,Guilin University of Technology,Guilin 541004,People's Republic of China;College of Chemistry and Materials Science,Hunan Agricultural University,Hunan 410128,People's Republic of China;School of Material Science and Engineering,Hunan University of Science and Technology,Xiangtan,Hunan Province,People's Republic of China;School of Industrial Engineering and Birck Nanotechnology Centre,Purdue University,West Lafayette,IN 47907,USA;Institute of Environmental Research at Greater Bay,Key Laboratory for Water Quality and Conservation of the Pearl River Delta,Ministry of Education,Guangzhou University,Guangzhou 510006,Guangdong,People's Republic of China
Electron-Deficient Zn-N6 Configuration Enabling Polymeric Carbon Nitride for Visible-Light Photocatalytic Overall Water Splitting
Daming Zhao;Yiqing Wang;Chung-Li Dong;Fanqi Meng;Yu-Cheng Huang;Qinghua Zhang;Lin Gu;Lan Liu;Shaohua Shen-International Research Center for Renewable Energy,State Key Laboratory of Multiphase Flow in Power Engineering,Xi'an Jiaotong University,Xi'an 710049,People's Republic of China;State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,People's Republic of China;Department of Physics,Tamkang University,New Taipei City 25137,Taiwan,People's Republic of China;Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,People's Republic of China
In-situ Construction of Sulfur-doped g-C3N4/defective g-C3N4 Iso-type Step-scheme Heterojunction for Boosting Photocatalytic H2 Evolution
Jing Zou;Guodong Liao;Jizhou Jiang;Zhiguo Xiong;Saishuai Bai;Haitao Wang;Pingxiu Wu;Peng Zhang;Xin Li-School of Environmental Ecology and Biological Engineering,School of Chemistry and Environmental Engineering,Key Laboratory of Green Chemical Engineering Process of Ministry of Education,Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education,Wuhan Institute of Technology,Wuhan 430205,China;Key Laboratory of Rare Mineral,Ministry of Natural Resources,Geological Experimental Testing Center of Hubei Province,Wuhan 430034,China;Semiconductor Electronic Special Gas of Hubei Engineering Research Center,Jingzhou,Hubei 434000,China;State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM),School of Materials Science and Engi-neering,Zhengzhou University,Zhengzhou 450001,China;Institute of Biomass Engineering,Key Laboratory of Energy Plants Resource and Utilization,Ministry of Agriculture and Rural Affairs,South China Agricultural University,Guangzhou 510642,China
Bi and S Co-doping g-C3N4 to Enhance Internal Electric Field for Robust Photocatalytic Degradation and H2 Production
Yan Hu;Xibao Li;Weiwei Wang;Fang Deng;Lu Han;Xiaoming Gao;Zhijun Feng;Zhi Chen;Juntong Huang;Fanyan Zeng;Fan Dong-School of Materials Science and Engineering,Nanchang Hangkong University,Nanchang 330063,China;Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle,Nanchang Hangkong University,Nanchang 330063,China;School of Materials and Metallurgy,University of Science and Technology,Anshan,Liaoning 114051,China;Department of Chemistry and Chemical Engineering,Shaanxi Key Laboratory of Chemical Reaction Engineering,Yan'an University,Yan'an 716000,China;Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu 611731,China
WO3@Fe2O3 Core-Shell Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting
Guobing Mao;Heng Wu;Tianyang Qiu;Dingjie Bao;Longjie Lai;Wenguang Tu;Qi Liu-School of Materials Science and Engineering,Anhui Polytechnic University,Wuhu,Anhui 241000,China;School of Mechanical Engineering,Anhui Institute of Information Technology,Wuhu,Anhui 241100,China;Key Laboratory of Modern Acoustics(MOE),Institute of Acoustics,School of Physics,Eco-materials and Renewable Energy Research Center(ERERC),National Laboratory of Solid State Microstructures,Collaborative Innovation Center of Advanced Microstructures,Jiangsu Key Laboratory for Nano Tech-nology,Nanjing University,Nanjing 210093,China;School of Science and Engineering,The Chinese University of Hong Kong,Shenzhen,Guangdong 518172,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。