典型文献
A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear,Dispersive Equations
文献摘要:
The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.
文献关键词:
中图分类号:
作者姓名:
Ohannes A.Karakashian;Michael M.Wise
作者机构:
Department of Mathematics,University of Tennessee,Knoxville,TN,USA;Advanced Technology Integration Department,Dynetics,Inc.,Huntsville,AL,USA
文献出处:
引用格式:
[1]Ohannes A.Karakashian;Michael M.Wise-.A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear,Dispersive Equations)[J].应用数学与计算数学学报,2022(03):823-854
A类:
semidiscrete,Karakashian,Makridakis
B类:
Posteriori,Error,Estimates,Finite,Element,Methods,Systems,Nonlinear,Dispersive,Equations,study,regards,numerical,solutions,systems,Korteweg,Vries,type,coupled,through,their,nonlinear,terms,In,our,previous,work,constructed,conservative,dissipative,finite,element,methods,these,presented,priori,error,estimates,schemes,this,sequel,posteriori,fully,approximations,introduced,key,tool,employed,analysis,dispersive,reconstruction,devel,oped,by,related,discontinuous,Galerkin,We,conclude,providing,set,experiments,designed,validate,theory,explore,effectivity,resulting,indicators
AB值:
0.660603
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。