典型文献
Gevrey Well-Posedness of the Hyperbolic Prandtl Equations
文献摘要:
We study 2D and 3D Prandtl equations of degenerate hyperbolic type,and establish without any structural assumption the Gevrey well-posed-ness with Gevrey index≤2.Compared with the classical parabolic Prandtl equations,the loss of the derivatives,caused by the hyperbolic feature coupled with the degeneracy,cannot be overcame by virtue of the classical cancella-tion mechanism that developed for the parabolic counterpart.Inspired by the abstract Cauchy-Kowalewski theorem and by virtue of the hyperbolic feature,we give in this text a straightforward proof,basing on an elementary L2 energy estimate.In particular our argument does not involve the cancellation mecha-nism used efficiently for the classical Prandtl equations.
文献关键词:
中图分类号:
作者姓名:
Wei-Xi Li;Rui Xu
作者机构:
School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China;Hubei Key Laboratory of Computational Science,Wuhan University,Wuhan 430072,China
文献出处:
引用格式:
[1]Wei-Xi Li;Rui Xu-.Gevrey Well-Posedness of the Hyperbolic Prandtl Equations)[J].数学研究通讯,2022(04):605-624
A类:
Kowalewski
B类:
Gevrey,Well,Posedness,Hyperbolic,Prandtl,Equations,study,2D,equations,degenerate,hyperbolic,type,establish,without,any,structural,assumption,well,posed,Compared,classical,parabolic,loss,derivatives,caused,by,feature,coupled,degeneracy,cannot,be,overcame,virtue,mechanism,that,developed,counterpart,Inspired,abstract,Cauchy,theorem,give,this,text,straightforward,proof,basing,elementary,L2,energy,estimate,particular,our,argument,does,involve,cancellation,efficiently
AB值:
0.577505
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。