首站-论文投稿智能助手
典型文献
Nutrient uptake, physiological responses and growth of tobacco (Nicotiana tabacum L.) in soil under composite salt stress
文献摘要:
High soil salinity imposes osmotic stress and ion toxicity in plants, leading to substantial crop yield loss worldwide. Understanding of the quantitative and dynamic physiological responses to composite soil salt stress is limited and needs to be expanded. In this study, physiological, nutritional, and biomass yield parameters of tobacco (Nicotiana tabacum L.) grown in soil with five levels of composite soil salinity (CSS), basal CSS level (control, CK) and 3 (T1), 6 (T2), 9 (T3), and 12 (T4) times the basal CSS level, under greenhouse were determined at days 30, 60, and 90 after transplanting. Leaf dry biomass significantly (P <0.05) increased at the low salinity levels applied (T1 and T2) at all three time points, whereas it progressively declined as the CSS level further increased. The leaf physiological and photosynthetic responses were more adversely affected by CSS at the early growth stage (day 30). A path coefficient analysis demonstrated that leaf proline content had the largest direct effect (?0.66), and leaf Cu content had the most significant indirect effect (0.49) on leaf dry biomass of plants. The results suggest that lower CSS levels (T1 and T2) could stimulate tobacco growth (leaf biomass yield, in particular), and higher leaf proline and Cu levels at the early growth stage may potentially increase the ability of tobacco plants to withstand the adverse effects of salinity, which could be considered for future research and development of salinity management strategies.
文献关键词:
作者姓名:
Jian CUI;Dongrui YAO;Jing MA;Xiefeng YE;Ying PENG;Jiaqian SONG;Jinfeng LI;Yajun CHANG;John YANG;Zhen ZHANG;Xueli LI;Xiaojing LIU;Khalil KARIMAN
作者机构:
Institute of Botany,Jiangsu Province and Chinese Academy of Sciences,Nanjing 210014(China);National Tobacco Cultivation and Physiology and Biochemistry Research Center,Key Laboratory for Tobacco Cultivation of Tobacco Industry,College of Tobacco Science,Henan Agricultural University,Zhengzhou 450002(China);Shangluo Tobacco Company,Luonan Branch,Shangluo 726000(China);School of Environmental Science,Nanjing Xiaozhuang University,Nanjing 211171(China);Department of Agriculture and Environmental Science,Lincoln University of Missouri,Jefferson City MO 65201(USA);Staff Development Institute of China National Tobacco Corporation,Zhengzhou 450000(China);School of Agriculture and Environment,The University of Western Australia,Perth WA 6009(Australia)
引用格式:
[1]Jian CUI;Dongrui YAO;Jing MA;Xiefeng YE;Ying PENG;Jiaqian SONG;Jinfeng LI;Yajun CHANG;John YANG;Zhen ZHANG;Xueli LI;Xiaojing LIU;Khalil KARIMAN-.Nutrient uptake, physiological responses and growth of tobacco (Nicotiana tabacum L.) in soil under composite salt stress)[J].土壤圈(英文版),2022(06):893-904
A类:
B类:
Nutrient,uptake,physiological,responses,growth,tobacco,Nicotiana,tabacum,soil,under,composite,salt,stress,High,salinity,imposes,osmotic,toxicity,plants,leading,substantial,crop,yield,loss,worldwide,Understanding,quantitative,dynamic,limited,needs,be,expanded,In,this,study,nutritional,biomass,parameters,grown,five,levels,CSS,basal,control,T4,times,greenhouse,were,determined,days,after,transplanting,Leaf,dry,significantly,increased,applied,three,points,whereas,progressively,declined,further,leaf,photosynthetic,more,adversely,affected,by,early,stage,path,coefficient,analysis,demonstrated,that,proline,content,had,largest,most,indirect,results,suggest,lower,could,stimulate,particular,higher,may,potentially,ability,withstand,effects,which,considered,future,research,development,management,strategies
AB值:
0.492528
相似文献
RNAi-mediated suppression of the abscisic acid catabolism gene OsABA8ox1 increases abscisic acid content and tolerance to saline-alkaline stress in rice(Oryza sativa L.)
Xiaolong Liu;Xianzhi Xie;Chongke Zheng;Lixing Wei;Xiaowei Li;Yangyang Jin;Guohui Zhang;Chang-Jie Jiang;Zhengwei Liang-Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130102,Jilin,China;College of Life Science and Resources and Environment,Yichun University,Yichun 336000,Jiangxi,China;Shandong Rice Research Institute,Shandong Academy of Agricultural Sciences,Jinan 250100,Shandong,China;Dongying Academy of Agricultural Sciences,Dongying 257091,Shandong,China;College of Life Sciences,Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development,Jilin Agricultural University,Changchun 130118,Jilin,China;Da'an Sodic Land Experiment Station,Da'an 131317,Jilin,China;Institute of Agrobiological Sciences,NARO,Kannondai 2-1-2,Tsukuba 305-8602,Japan
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。