首站-论文投稿智能助手
典型文献
Metal matrix nanocomposites in tribology:Manufacturing,performance,and mechanisms
文献摘要:
Metal matrix nanocomposites(MMNCs)become irreplaceable in tribology industries,due to their supreme mechanical properties and satisfactory tribological behavior.However,due to the dual complexity of MMNC systems and tribological process,the anti-friction and anti-wear mechanisms are unclear,and the subsequent tribological performance prediction and design of MMNCs are not easily possible:A critical up-to-date review is needed for MMNCs in tribology.This review systematically summarized the fabrication,manufacturing,and processing techniques for high-quality MMNC bulk and surface coating materials in tribology.Then,important factors determining the tribological performance(mainly anti-friction evaluation by the coefficient of friction(CoF)and anti-wear assessment with wear rate)in MMNCs have been investigated thoroughly,and the correlations have been analyzed to reveal their potential coupling/synergetic roles of tuning tribological behavior of MMNCs.Most importantly,this review combined the classical metal/alloy friction and wear theories and adapted them to give a(semi-)quantitative description of the detailed mechanisms of improved anti-friction and anti-wear performance in MMNCs.To guarantee the universal applications of these mechanisms,their links with the analyzed influencing factors(e.g.,loading forces)and characteristic features like tribo-film have been clarified.This approach forms a solid basis for understanding,predicting,and engineering MMNCs'tribological behavior,instead of pure phenomenology and experimental observation.Later,the pathway to achieve a broader application for MMNCs in tribo-related fields like smart materials,biomedical devices,energy storage,and electronics has been concisely discussed,with the focus on the potential development of modeling,experimental,and theoretical techniques in MMNCs'tribological processes.In general,this review tries to elucidate the complex tribo-performances of MMNCs in a fundamentally universal yet straightforward way,and the discussion and summary in this review for the tribological performance in MMNCs could become a useful supplementary to and an insightful guidance for the current MMNC tribology study,research,and engineering innovations.
文献关键词:
作者姓名:
Shuaihang PAN;Kaiyuan JIN;Tianlu WANG;Zhinan ZHANG;Long ZHENG;Noritsugu UMEHARA
作者机构:
Department of Mechanical and Aerospace Engineering,University of California Los Angeles(UCLA),Los Angeles,CA 90095,USA;Physical Intelligence Department,Max Planck Institute for Intelligent Systems,Stuttgart 70569,Germany;Stake Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China;Key Laboratory of Bionic Engineering(Ministry of Education),College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China;Micro-Nano Mechanical Science Laboratory,Department of Micro-Nano Mechanical Science and Engineering,Graduate School of Engineering,Nagoya University,Chikisa-ku Furo-cho,Nagoya,Aichi 464-8601,Japan
文献出处:
引用格式:
[1]Shuaihang PAN;Kaiyuan JIN;Tianlu WANG;Zhinan ZHANG;Long ZHENG;Noritsugu UMEHARA-.Metal matrix nanocomposites in tribology:Manufacturing,performance,and mechanisms)[J].摩擦(英文),2022(10):1596-1634
A类:
MMNCs,MMNC,CoF
B类:
Metal,matrix,nanocomposites,tribology,Manufacturing,mechanisms,become,irreplaceable,industries,due,their,supreme,mechanical,properties,satisfactory,tribological,behavior,However,dual,complexity,systems,friction,wear,are,unclear,subsequent,prediction,design,not,easily,possible,critical,review,needed,This,systematically,summarized,fabrication,manufacturing,processing,techniques,high,quality,bulk,surface,coating,materials,Then,factors,determining,mainly,evaluation,by,coefficient,assessment,rate,have,been,investigated,thoroughly,correlations,analyzed,reveal,potential,coupling,synergetic,roles,tuning,Most,importantly,this,combined,classical,metal,alloy,theories,adapted,them,give,semi,quantitative,description,detailed,improved,To,guarantee,universal,applications,these,links,influencing,loading,forces,characteristic,features,like,film,clarified,approach,forms,solid,basis,understanding,predicting,engineering,instead,pure,phenomenology,experimental,observation,Later,pathway,achieve,broader,related,fields,smart,biomedical,devices,energy,storage,electronics,has,concisely,discussed,focus,development,modeling,theoretical,processes,In,general,elucidate,performances,fundamentally,yet,straightforward,discussion,summary,could,useful,supplementary,insightful,guidance,current,study,research,innovations
AB值:
0.501347
相似文献
Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant:From mechanisms to application
Xin CUI;Changhe LI;Wenfeng DING;Yun CHEN;Cong MAO;Xuefeng XU;Bo LIU;Dazhong WANG;Hao Nan LI;Yanbin ZHANG;Zafar SAID;Sujan DEBNATH;Muhammad JAMIL;Hafiz Muhammad ALI;Shubham SHARMA-School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China;College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Chengdu Tool Research Institute Co.,Ltd.Chengdu 610500,China;College of Automotive and Mechanical Engineering,Changsha University of Science and Technology,Changsha 410114,China;Key Laboratory of Special Purpose Equipment and Advanced Processing Technology,Ministry of Education&Zhejiang Province,Zhejiang University of Technology,Hangzhou 310032,China;Sichuan Future Aerospace Industry LLC.,Shifang 618400,China;School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Aerospace,University of Nottingham Ningbo China,Ningbo 315100,China;College of Engineering,University of Sharjah,Sharjah 27272,United Arab Emirates;Mechanical Engineering Department,Curtin University,Miri 98009,Malaysia;Mechanical Engineering Department,King Fahd University of Petroleum and Minerals,Dhahran 31261,Saudi Arabia;Department of Mechanical Engineering and Advanced Materials Science,Council of Scientific and Industrial Research(CSIR)-Central Leather Research Institute(CLRI),Regional Center for Extension and Development,Jalandhar 144021,India
Additive manufacturing of metals:Microstructure evolution and multistage control
Zhiyuan Liu;Dandan Zhao;Pei Wang;Ming Yan;Can Yang;Zhangwei Chen;Jian Lu;Zhaoping Lu-Additive Manufacturing Institute,College of Mechatronics and Control Engineering,Shenzhen University,Shenzhen 518060,China;Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China;Sino-German College of Intelligent Manufacturing,Shenzhen Technology University,Shenzhen 518118,China;CityU-Shenzhen Futian Research Institute,Shenzhen 518045,China;Hong Kong Branch of National Precious Metals Material Engineering Research Center(NPMM),City University of Hong Kong,Hong Kong,China;Beijing Advanced Innovation Center for Materials Genome Engineering,State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,Beijing 100083,China
Antifouling nanocomposite polymer coatings for marine applications:A review on experiments,mechanisms,and theoretical studies
Sepideh Pourhashem;Abdolvahab Seif;Farhad Saba;Elham Garmroudi Nezhad;Xiaohong Ji;Ziyang Zhou;Xiaofan Zhai;Majid Mirzaee;Jizhou Duan;Alimorad Rashidi;Baorong Hou-Key Laboratory of Marine Environmental Corrosion and Bio-fouling,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China;Open studio for marine Corrosion and Protection,Pilot National Laboratory for Marine Science and Technology,Qingdao 266237,China;Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China;Nanotechnology Research Center,Research Institute of Petroleum Industry(RIPI),West Entrance Blvd.,Olympic Village,Tehran,Iran;Department of Materials Science and Engineering,Engineering Faculty,Ferdowsi University of Mashhad,Mashhad,Iran;University of Chinese Academy of Sciences,Beijing 100039,China;Non-Metallic Materials Research Group,Niroo Research Institute,Tehran 14665517,Iran
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。