首站-论文投稿智能助手
典型文献
Tribological behavior comparisons of high chromium stainless and mild steels against high-speed steel and ceramics at high temperatures
文献摘要:
High-temperature tribology, which is often involved during hot metal forming, is controlled via oxidation on a rubbing surface. However, for high chromium stainless steel (ST), where oxidation is strongly inhibited, the effect of counterface materials on tribological behavior is yet to be elucidated. In this study, the effects of counterfaces on the tribological behavior of 253MA ST and mild steel (MS) are investigated via a ball-on-disc test at 900 °C using a 20 N load. The results reveal that high-speed steel (HSS) experiences severe abrasive wear with MS and causes severe sticking problems with ST. Si3N4 and SiC present substantially stronger abrasive wear resistance than HSS with MS, and the friction coefficients are dependent on the type of ceramic. Both ceramics can facilitate the establishment of a thick tribo-oxide layer (> 3 μm) on ST to prevent sticking; however, this is accompanied by severe pull-out and fracture wear. The effects of the counterface on the mechanical properties of the tribo-oxide layer, near-surface transformation, and the responses of the tribo-oxide layer to friction and wear are discussed. This study contributes to the understanding of interfacial tribological behaviors when different types of tools are used on MS and ST.
文献关键词:
作者姓名:
Shaogang CUI;Yangzhen LIU;Tong WANG;Kiet TIEU;Long WANG;Dahai ZENG;Zhou LI;Wei LI
作者机构:
Institute of Advanced Wear&Corrosion Resistant and Functional Materials,Jinan University,Guangzhou 510632,China;School of Mechanical,Materials,Mechatronic and Biomedical Engineering,University of Wollongong,NSW 2522,Australia
文献出处:
引用格式:
[1]Shaogang CUI;Yangzhen LIU;Tong WANG;Kiet TIEU;Long WANG;Dahai ZENG;Zhou LI;Wei LI-.Tribological behavior comparisons of high chromium stainless and mild steels against high-speed steel and ceramics at high temperatures)[J].摩擦(英文),2022(03):436-453
A类:
counterface,counterfaces,253MA
B类:
Tribological,comparisons,high,chromium,stainless,mild,steels,against,speed,ceramics,temperatures,High,tribology,which,often,involved,during,hot,metal,forming,controlled,via,oxidation,rubbing,surface,However,ST,where,strongly,inhibited,materials,tribological,yet,elucidated,In,this,study,effects,are,investigated,ball,test,using,load,results,reveal,that,HSS,experiences,severe,abrasive,wear,causes,sticking,problems,Si3N4,SiC,present,substantially,stronger,resistance,than,friction,coefficients,dependent,Both,can,facilitate,establishment,thick,oxide,layer,prevent,however,accompanied,by,pull,out,fracture,mechanical,properties,near,transformation,responses,discussed,This,contributes,understanding,interfacial,behaviors,when,different,types,tools,used
AB值:
0.507505
相似文献
Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant:From mechanisms to application
Xin CUI;Changhe LI;Wenfeng DING;Yun CHEN;Cong MAO;Xuefeng XU;Bo LIU;Dazhong WANG;Hao Nan LI;Yanbin ZHANG;Zafar SAID;Sujan DEBNATH;Muhammad JAMIL;Hafiz Muhammad ALI;Shubham SHARMA-School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China;College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Chengdu Tool Research Institute Co.,Ltd.Chengdu 610500,China;College of Automotive and Mechanical Engineering,Changsha University of Science and Technology,Changsha 410114,China;Key Laboratory of Special Purpose Equipment and Advanced Processing Technology,Ministry of Education&Zhejiang Province,Zhejiang University of Technology,Hangzhou 310032,China;Sichuan Future Aerospace Industry LLC.,Shifang 618400,China;School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Aerospace,University of Nottingham Ningbo China,Ningbo 315100,China;College of Engineering,University of Sharjah,Sharjah 27272,United Arab Emirates;Mechanical Engineering Department,Curtin University,Miri 98009,Malaysia;Mechanical Engineering Department,King Fahd University of Petroleum and Minerals,Dhahran 31261,Saudi Arabia;Department of Mechanical Engineering and Advanced Materials Science,Council of Scientific and Industrial Research(CSIR)-Central Leather Research Institute(CLRI),Regional Center for Extension and Development,Jalandhar 144021,India
Impact of Si on the high-temperature oxidation of AlCr(Si)N coatings
Nikolaus J?ger;Michael Meindlhumer;Michal Zitek;Stefan Spor;Hynek Hruby;Farwah Nahif;Jaakko Julin;Martin Rosenthal;Jozef Keckes;Christian Mitterer;Rostislav Daniel-Christian Doppler Laboratory for Advanced Synthesis of Novel Multifunctional Coatings at the Department of Materials Science,Montanuniversit?t Leoben,Austria;voestalpine eifeler Vacotec GmbH,Diisseldorf,Germany;Institute of Ion Beam Physics and Materials Research,Helmholtz-Zentrum Dresden-Rossendorf,Dresden,Germany;Department of Physics,University of Jyvaskyla,Finland;European Synchrotron Radiation Facility,Grenoble,France;Erich Schmid Institute for Materials Science,Austrian Academy of Sciences,Austria;Department of Materials Science,Montanuniversit?t Leoben,Austria
Enhancing structure and cycling stability of Ni-rich layered oxide cathodes at elevated temperatures via dual-function surface modification
Ying-De Huang;Han-Xin Wei;Pei-Yao Li;Yu-Hong Luo;Qing Wen;Ding-Hao Le;Zhen-Jiang He;Hai-Yan Wang;You-Gen Tang;Cheng Yan;Jing Mao;Ke-Hua Dai;Xia-Hui Zhang;Jun-Chao Zheng-School of Metallurgy and Environment,Central South University,Changsha 410083,Hunan,China;National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals,Central South University,Changsha 410083,Hunan,China;Engineering Research Center of the Ministry of Education for Advanced Battery Materials,Central South University,Changsha 410083,Hunan,China;Hunan Provincial Key Laboratory of Chemical Power Sources,College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,Hunan,China;School of Mechanical,Medical and Process Engineering,Queensland University of Technology,Brisbane 4001,Queensland,Australia;School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,Henan,China;College of Chemistry,Tianjin Normal University,Tianjin 300387,China;School of Mechanical and Materials Engineering,Washington State University,Pullman 99164,Washington,USA
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。