典型文献
1-planar Graphs without 4-cycles or 5-cycles are 5-colorable
文献摘要:
A graph is 1-planar if it can be drawn on the Euclidean plane so that each edge is crossed by at most one other edge.A proper vertex k-coloring of a graph G is defined as a vertex coloring from a set of k colors such that no two adjacent vertices have the same color.A graph that can be assigned a proper k-coloring is k-colorable.A cycle is a path of edges and vertices wherein a vertex is reachable from itself.A cycle contains k vertices and k edges is a k-cycle.In this paper,it is proved that 1-planar graphs without 4-cycles or 5-cycles are 5-colorable.
文献关键词:
中图分类号:
作者姓名:
Li-li SONG;Lei SUN
作者机构:
Department of Mathematics and Statistics,Shandong Normal University,Jinan 250358,China
文献出处:
引用格式:
[1]Li-li SONG;Lei SUN-.1-planar Graphs without 4-cycles or 5-cycles are 5-colorable)[J].应用数学学报(英文版),2022(01):169-177
A类:
colorable
B类:
planar,Graphs,without,cycles,are,if,can,be,drawn,Euclidean,plane,so,that,crossed,by,most,one,other,proper,vertex,coloring,defined,from,set,colors,such,no,two,adjacent,vertices,have,same,assigned,path,edges,wherein,reachable,itself,contains,In,this,paper,proved,graphs
AB值:
0.462749
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。