典型文献
Independent Roman{2}-Domination in Trees
文献摘要:
For a graph G=(V,E),a Roman{2}-dominating function f:V →{0,1,2}has the property that for every vertex v ∈ V with f(v)=0,either v is adjacent to at least one vertex u for which f(u)=2,or at least two vertices u1 and u2 for which f(u1)=f(u2)=1.A Roman{2}-dominating function f=(Vo,V1,V2)is called independent if V1UV2 is an independent set.The weight of an independent Roman{2}-dominating function f is the value ω(f)=∑v∈Vf(v),and the independent Roman{2}-domination number i{R2}(G)is the minimum weight of an independent Roman{2}-dominating function on G.In this paper,we characterize all trees with i{R2}(T)=γ(T)+1,and give a linear time algorithm to compute the value of i{R2}(T)for any tree T.
文献关键词:
中图分类号:
作者姓名:
LI Bei-bei;SHANG Wei-ping
作者机构:
School of Puyang Innovation High School,Puyang 457000,China;School of Mathematics and Statistics,Zhengzhou University,Zhengzhou 450001,China
文献出处:
引用格式:
[1]LI Bei-bei;SHANG Wei-ping-.Independent Roman{2}-Domination in Trees)[J].数学季刊(英文版),2022(04):386-393
A类:
Domination,V1UV2
B类:
Independent,Roman,Trees,For,graph,dominating,function,has,property,that,every,vertex,either,adjacent,least,one,which,two,vertices,u1,u2,Vo,called,independent,if,set,weight,value,Vf,domination,number,minimum,this,paper,characterize,trees,+1,give,linear,algorithm,compute,any
AB值:
0.447337
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。