首站-论文投稿智能助手
典型文献
Estimation of permafrost thermal behavior using Fourier series model
文献摘要:
Permafrost,being an important component of the cryosphere,is sensitive to climate change.Therefore,it is necessary to investigate the change of temperature within permafrost.In this study,we proposed a Fourier series model derived from the conduction equation to simulate permafrost thermal behavior over a year.The boundary condition was represented by the Fourier series and the geothermal gradient.The initial condition was represented as a linear function relative to the geothermal gradient.A comparative study of the different models(sinusoidal model,Fourier series model,and the proposed model)was conducted.Data collected from the northern Da Xing'anling Mountains,Northeast China,were applied for parameterization and validation for these models.These models were compared with daily mean ground temperature from the shallow permafrost layer and annual mean ground temperature from the bottom permafrost layer,respectively.Model performance was assessed using three coefficients of accuracy,i.e.,the mean bias error,the root mean square error,and the coefficient of determination.The comparison results showed that the proposed model was accurate enough to simulate temperature variation in both the shallow and bottom permafrost layer as compared with the other two Fourier series models(sinusoidal model and Fourier model).The proposed model expanded on a previous Fourier series model for which the initial and bottom boundary conditions were restricted to being constant.
文献关键词:
作者姓名:
ZHANG Yan-yu;ZANG Shu-ying;ZHAO Lin;MA Da-long;LIN Yue;LI Hao
作者机构:
Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions,Harbin Normal University,Harbin 150025,China;Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety,Harbin Normal University,Harbin 150025,China;Nanjing University of Information Science&Technology,Nanjing 210044,China
引用格式:
[1]ZHANG Yan-yu;ZANG Shu-ying;ZHAO Lin;MA Da-long;LIN Yue;LI Hao-.Estimation of permafrost thermal behavior using Fourier series model)[J].山地科学学报(英文版),2022(03):715-725
A类:
Permafrost
B类:
Estimation,permafrost,behavior,using,Fourier,series,being,important,component,cryosphere,sensitive,climate,change,Therefore,necessary,investigate,temperature,within,In,this,study,proposed,derived,from,conduction,equation,simulate,over,year,boundary,was,represented,by,geothermal,gradient,initial,linear,function,relative,comparative,different,models,sinusoidal,conducted,Data,collected,northern,Xing,anling,Mountains,Northeast,China,were,applied,parameterization,validation,these,These,compared,daily,mean,ground,shallow,layer,annual,bottom,respectively,Model,performance,assessed,three,coefficients,accuracy,bias,error,root,square,determination,comparison,results,showed,that,accurate,enough,variation,both,two,expanded,previous,which,conditions,restricted,constant
AB值:
0.479125
相似文献
Response of soil respiration to environmental and photosynthetic factors in different subalpine forest?cover types in a loess alpine hilly region
Yuanhang Li;Sha Lin;Qi Chen;Xinyao Ma;Shuaijun Wang;Kangning He-School of Soil and Water Conservation,Key Laboratory of State Forestry Administration On Soil and Water Conservation,Beijing Forestry University,Beijing 100083, People's Republic of China;Beijing Engineering Research Center of Soil and Water Conservation,Beijing Forestry University,Beijing 100083, People's Republic of China;Engineering Research Center of Forestry Ecological Engineering,Ministry of Education,Beijing Forestry University,Beijing 100083,People's Republic of China;North China Power Engineering Co.,Ltd.of China Power Engineering Consulting Group,Changchun 130021, People's Republic of China;Power China Huadong Engineering Corporation Limited, Hangzhou 311122,People's Republic of China
Climate warming over 1961–2019 and impacts on permafrost zonation in Northeast China
Xiaoying Li;Huijun Jin;Long Sun;Hongwei Wang;Ruixia He;Yadong Huang;Xiaoli Chang-Key Laboratory of Sustainable Forest Ecosystem Management,Ministry of Education,School of Forestry,Northeast Forestry University,Harbin 150040,People's Republic of China;School of Civil Engineering,Northeast China Observatory and Research Station of Permafrost Geo-Environment-Ministry of Education,Institute of Cold-Regions Engineering Science and Technology,Northeast Forestry University,Harbin 150040,People's Republic of China;Da-Xing'anling Observatory and Research Station of Permafrost Engineering and Environment and State Key Laboratory of Frozen Soils Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,People's Republic of China;School of Resource and Environmental and Safety Engineering,Hunan University of Science and Technology,Xiangtan,Hunan 411202,People's Republic of China
Debris flow simulation 2D(DFS 2D):Numerical modelling of debris flows and calibration of friction parameters
Minu Treesa Abraham;Neeelima Satyam;Biswajeet Pradhan;Hongling Tian-Department of Civil Engineering,Indian Institute of Technology Indore,Indore,India;Centre for Advanced Modelling and Geospatial Information Systems(CAMGIS),School of Civil and Environmental Engineering,Faculty of Engineering and Information Technology,University of Technology Sydney,Sydney,Australia;Center of Excellence for Climate Change Research,King Abdulaziz University,Jeddah,Saudi Arabia;Earth Observation Centre,Institute of Climate Change,University Kebangsaan Malaysia,Bangi,Malaysia;Key Laboratory of Mountain Hazards and Surface Process,Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu,China
Predictability performance enhancement for suspended sediment in rivers:Inspection of newly developed hybrid adaptive neuro-fuzzy system model
Rana Muhammad Adnan;Zaher Mundher Yaseen;Salim Heddam;Shamsuddin Shahid;Aboalghasem Sadeghi-Niaraki;Ozgur Kisi-State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing,210098,China;Department of Urban Planning,Engineering Networks and Systems,Institute of Architecture and Construction,South Ural State University,76,Lenin Prospect,454080 Chelyabinsk,Russia;New Era and Development in Civil Engineering Research Group,Scientific Research Center,Al-Ayen University,Thi-Qar,64001,Iraq;Faculty of Science,Agronomy Department,Hydraulics Division University,20 Ao(u)t 1955,Route El Hadaik,BP 26,Skikda,Algeria;School of Civil Engineering,Faculty of Engineering,Universiti Teknologi Malaysia (UTM),Johor Bahru,81310,Malaysia;Geoinformation Tech.Center of Excellence,Faculty of Geomatics Engineering,K.N.Toosi University of Technology,Tehran,Iran;Department of Computer Science and Engineering,Sejong University,Seoul,Republic of Korea;Civil Engineering Department,Ilia State University,Tbilisi,Georgia,USA
Projections of surface air temperature and precipitation in the 21st century in the Qilian Mountains,Northwest China,using REMO in the CORDEX
Lan-Ya LIU;Xue-Jia WANG;Xiao-Hua GOU;Mei-Xue YANG;Zi-Han ZHANG-Key Laboratory of Western China's Environmental Systems(Ministry of Education),College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,China;Gansu Liancheng Forest Ecosystem Field Observation and Research Station,Lanzhou University,Lanzhou 730333,China;State Key Laboratory of Cryospheric Science,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China;Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730333, China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。