首站-论文投稿智能助手
典型文献
Nd3+-doped silica glass and fiber prepared by modified sol-gel method
文献摘要:
Large-size Al3+/Nd3+ co-doped silica glass with 5000 ppm Nd3+ and 50,000 ppm Al3+ doping concentrations was prepared by the modified sol-gel method combined with high-temperature melting and molding technology. Electron probe micro-analyzer tests indicated that high doping homogeneity was achieved with this sample preparation method. The spectral properties of the Nd3+ ions were evaluated. Nd3+-doped silica fiber (NDF) with a core-to-clad ratio of 20/125 μm was drawn from the preform with the Al3+/Nd3+ co-doped silica glass as the core. In the laser oscillation experiment, a maximum output power of 14.6 W at 1.06 μm with a slope efficiency of 39.6% was obtained from the NDF pumped by a commercial 808 nm laser diode. To the best of our knowledge, this is the highest laser power reported for an NDF operated at 1060 nm and prepared by a non-chemical vapor deposition method. In the master oscillator power amplifier experiment, a maximum power of 16.6 W corresponding to a slope efficiency of 30.5% at 1061 nm was also demonstrated. The laser performance of the NDF exhibited the great advantages and potential of the modified sol-gel method in fabricating Nd3+-doped silica glass for a new type of NDFs like large mode area fibers and fibers with large diameter ratio of core/cladding.
文献关键词:
作者姓名:
Yinggang Chen;Zhiquan Lin;Yafei Wang;Meng Wang;Lei Zhang;Yan Jiao;Hehe Dong;Shikai Wang;Chunlei Yu;Lili Hu
作者机构:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;University of Chinese Academy of Sciences, Beijing 100039, China;Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
引用格式:
[1]Yinggang Chen;Zhiquan Lin;Yafei Wang;Meng Wang;Lei Zhang;Yan Jiao;Hehe Dong;Shikai Wang;Chunlei Yu;Lili Hu-.Nd3+-doped silica glass and fiber prepared by modified sol-gel method)[J].中国光学快报(英文版),2022(09):091601
A类:
NDFs
B类:
Nd3+,doped,silica,glass,prepared,by,modified,sol,gel,method,Large,size,Al3+,ppm,doping,concentrations,was,combined,temperature,melting,molding,technology,Electron,probe,micro,analyzer,tests,indicated,that,homogeneity,achieved,this,sample,preparation,spectral,properties,were,evaluated,core,drawn,from,preform,In,laser,oscillation,experiment,maximum,output,power,slope,efficiency,obtained,pumped,commercial,diode,To,best,our,knowledge,highest,reported,operated,chemical,vapor,deposition,master,oscillator,amplifier,corresponding,also,demonstrated,performance,exhibited,great,advantages,potential,fabricating,new,type,like,large,mode,area,fibers,diameter,cladding
AB值:
0.463939
相似文献
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Compact ultrabroadband light-emitting diodes based on lanthanide-doped lead-free double perovskites
Shilin Jin;Renfu Li;Hai Huang;Naizhong Jiang;Jidong Lin;Shaoxiong Wang;Yuanhui Zheng;Xueyuan Chen;Daqin Chen-College of Physics and Energy,Fujian Normal University,Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials,Fuzhou 350117,China;Fujian Science&Technology Innovation Laboratory for Optoelectronic Information,Fuzhou 350116,China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures,Fujian Key Laboratory of Nanomaterials and State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou,Fujian 350002,China;Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering,Fuzhou 350117,China;Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage,Fuzhou 350117,China;College of Chemistry,Fuzhou University,Fuzhou 350116,China
Generation of single solitons tunable from 3 to 3.8 μm in cascaded Er3+-doped and Dy3+-doped fluoride fiber amplifiers
Linpeng Yu;Jinhui Liang;Shiting Huang;Jinzhang Wang;Jiachen Wang;Xing Luo;Peiguang Yan;Fanlong Dong;Xing Liu;Qitao Lue;Chunyu Guo;Shuangchen Ruan-Shenzhen Key Laboratory of Laser Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen 518118, China;Han’s Laser Technology Industry Group Co., Ltd., Shenzhen 518057, China;e-mail: scruan@sztu.edu.cn
Generation of single solitons tunable from 3 to 3.8 um in cascaded Er3+-doped and Dy3+-doped fluoride fiber amplifiers
LINPENG YU;JINHUI LIANG;SHITING HUANG;JINZHANG WANG;JIACHEN WANG;XING LUO;PEIGUANG YAN;FANLONG DONG;XING LIU;QITAO LUE;CHUNYU GUO;SHUANGCHEN RUAN-Shenzhen Key Laboratory of Laser Engineering,Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China;Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes,Shenzhen Technology University,Shenzhen 518118,China;Han's Laser Technology Industry Group Co.,Ltd.,Shenzhen 518057,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。