首站-论文投稿智能助手
典型文献
Effect of hollow insulation riser on shrinkage porosity and solidification structure of ingot
文献摘要:
The thermal insulation performance of riser is very important to the shrinkage porosity and solidification structure of ingot,but it is difficult to significantly improve due to the limit of thermal conductivity of riser material.A new type of hollow insulation riser was proposed based on the low thermal conductivity of air,which aims to improve the thermal insulation performance of riser.A 14.5-t steel ingot was prepared using the hollow insulation riser,and the casting temperature was 1500℃.The temperature evolution of the external surface of mold during solidification was measured using an infrared temperature instrument.A numerical model was established to simulate the porosity and solidification structure of ingot.The reliability of numerical simulation was verified by comparing simulation and experimental results.Results show that the insulation performance of the riser can be significantly improved through application of the hollow insulation sleeve.Compared with solid insulation sleeve,the shrinkage cavity depth was decreased and the position of porosity was raised when hollow insulation riser was applied.
文献关键词:
作者姓名:
Ying-jie Liu;Chun-lin Peng;Wan-ming Li;Xiao-lei Zhu;Ming-gang Shen;Xiang-wei Liao;Kun Liu;Chong-yi Wei;Yusuf Abba Yusuf;Ji Yang;Chang-you Cai
作者机构:
School of Materials and Metallurgy,University of Science and Technology Liaoning,Anshan 114051,Liaoning,China;State Key Laboratory of Metal Material for Marine Equipment and Application,Anshan 114000,Liaoning,China
引用格式:
[1]Ying-jie Liu;Chun-lin Peng;Wan-ming Li;Xiao-lei Zhu;Ming-gang Shen;Xiang-wei Liao;Kun Liu;Chong-yi Wei;Yusuf Abba Yusuf;Ji Yang;Chang-you Cai-.Effect of hollow insulation riser on shrinkage porosity and solidification structure of ingot)[J].钢铁研究学报(英文版),2022(12):1951-1960
A类:
B类:
Effect,hollow,insulation,riser,shrinkage,porosity,solidification,structure,ingot,thermal,performance,very,important,but,difficult,significantly,due,limit,conductivity,material,new,type,was,proposed,air,which,aims,steel,prepared,using,casting,temperature,evolution,external,surface,mold,during,measured,infrared,instrument,numerical,model,established,simulate,reliability,simulation,verified,by,comparing,experimental,results,Results,show,that,be,improved,through,application,sleeve,Compared,cavity,depth,decreased,position,raised,when,applied
AB值:
0.419155
相似文献
Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant:From mechanisms to application
Xin CUI;Changhe LI;Wenfeng DING;Yun CHEN;Cong MAO;Xuefeng XU;Bo LIU;Dazhong WANG;Hao Nan LI;Yanbin ZHANG;Zafar SAID;Sujan DEBNATH;Muhammad JAMIL;Hafiz Muhammad ALI;Shubham SHARMA-School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China;College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Chengdu Tool Research Institute Co.,Ltd.Chengdu 610500,China;College of Automotive and Mechanical Engineering,Changsha University of Science and Technology,Changsha 410114,China;Key Laboratory of Special Purpose Equipment and Advanced Processing Technology,Ministry of Education&Zhejiang Province,Zhejiang University of Technology,Hangzhou 310032,China;Sichuan Future Aerospace Industry LLC.,Shifang 618400,China;School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Aerospace,University of Nottingham Ningbo China,Ningbo 315100,China;College of Engineering,University of Sharjah,Sharjah 27272,United Arab Emirates;Mechanical Engineering Department,Curtin University,Miri 98009,Malaysia;Mechanical Engineering Department,King Fahd University of Petroleum and Minerals,Dhahran 31261,Saudi Arabia;Department of Mechanical Engineering and Advanced Materials Science,Council of Scientific and Industrial Research(CSIR)-Central Leather Research Institute(CLRI),Regional Center for Extension and Development,Jalandhar 144021,India
Rare-earth-niobate high-entropy ceramic foams with enhanced thermal insulation performance
R.W.Yang;Y.P.Liang;J.Xu;X.Y.Meng;J.T.Zhu;S.Y.Cao;M.Y.Wei;R.X.Zhang;J.L.Yang;F.Gao-State Key Laboratory of Solidification Processing,MIIT Key Laboratory of Radiation Detection Materials and Devices,School of Materials Science and Engineering,Northwestern Polytechnical University,Xi'an,710072,China;NPU-QMUL Joint Research Institute of Advanced Materials and Structure,Northwestern Polytechnical University,Xi'an,710072,China;State Key Laboratory of New Ceramics and Fine Processing,School of Materials Science and Engineering,Tsinghua University,Beijing,100084,China;State Key Laboratory of Materials Processing and Die&Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan,430074,China
Influence of order-disorder transition on the mechanical and thermophysical properties of A2B2O7 high-entropy ceramics
Jiatong ZHU;Mingyue WEI;Jie XU;Runwu YANG;Xuanyu MENG;Ping ZHANG;Jinlong YANG;Guangzhong LI;Feng GAO-State Key Laboratory of Solidification Processing,MIIT Key Laboratory of Radiation Detection Materials and Devices,School of Materials Science and Engineering,Northwestern Polytechnical University,Xi'an 710072,China;NPU-QMUL Joint Research Institute of Advanced Materials and Structure,Northwestern Polytechnical University,Xi'an 710072,China;State Key Laboratory of New Ceramics and Fine Processing,School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China;State Key Laboratory of Porous Metal Materials,Northwest Institute for Nonferrous Metal Research,Xi'an 710016,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。