首站-论文投稿智能助手
典型文献
Angular engineering strategy of an additional periodic phase for widely tunable phase-matched deep-ultraviolet second harmonic generation
文献摘要:
Manipulation of the light phase lies at the heart of the investigation of light-matter interactions, especially for efficient nonlinear optical processes. Here, we originally propose the angular engineering strategy of the additional periodic phase (APP) for realization of tunable phase matching and experimentally demonstrate the widely tunable phase-matched second harmonic generation (SHG) which is expected for dozens of years. With an APP quartz crystal, the phase difference between the fundamental and frequency-doubled light is continuously angularly compensated under this strategy, which results the unprecedented and efficient frequency doubling at wavelengths almost covering the deep-UV spectral range from 221 to 332 nm. What's more, all the possible phase-matching types are originally realized simultaneously under the angular engineering phase-matching conditions. This work should not only provide a novel and practical nonlinear photonic device for tunable deep-UV radiation but also be helpful for further study of the light-matter interaction process.
文献关键词:
作者姓名:
Mingchuan Shao;Fei Liang;Haohai Yu;Huaijin Zhang
作者机构:
State Key Laboratory of Crystal Materials and Institute of Crystal Materials,Shandong University,Jinan 250100,China
引用格式:
[1]Mingchuan Shao;Fei Liang;Haohai Yu;Huaijin Zhang-.Angular engineering strategy of an additional periodic phase for widely tunable phase-matched deep-ultraviolet second harmonic generation)[J].光:科学与应用(英文版),2022(02):254-261
A类:
angularly
B类:
Angular,engineering,strategy,additional,periodic,phase,widely,tunable,matched,deep,ultraviolet,second,harmonic,generation,Manipulation,light,lies,heart,investigation,matter,interactions,especially,efficient,nonlinear,optical,processes,Here,originally,propose,realization,matching,experimentally,demonstrate,SHG,which,expected,dozens,years,With,quartz,crystal,difference,between,fundamental,frequency,doubled,continuously,compensated,under,this,results,unprecedented,doubling,wavelengths,almost,covering,UV,spectral,range,from,What,more,possible,types,are,realized,simultaneously,conditions,This,work,should,not,only,provide,novel,practical,photonic,device,radiation,but,also,helpful,further,study
AB值:
0.574258
相似文献
Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface
Yi Liu;Chunmei Ouyang;Quan Xu;Xiaoqiang Su;Quanlong Yang;Jiajun Ma;Yanfeng Li;Zhen Tian;Jianqiang Gu;Liyuan Liu;Jiaguang Han;Yunlong Shi;Weili Zhang-Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China;Institute of Solid State Physics, College of Physics and Electronic Science, Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong 037009, China;Nonlinear Physics Centre, Australian National University, Canberra, ACT 2601, Australia;School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA;e-mail: cmouyang@tju.edu.cn;e-mail: xiaoqiang.su@sxdtdx.edu.cn;e-mail: weili.zhang@okstate.edu
Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface
YI LIU;CHUNMEI OUYANG;QUAN XU;XIAOQIANG SU;QUANLONG YANG;JIAJUN MA;YANFENG LI;ZHEN TIAN;JIANQIANG GU;LIYUAN LIU;JIAGUANG HAN;YUNLONG SHI;WEILI ZHANG-Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering,Key Laboratory of Optoelectronic Information Technology(Ministry of Education of China),Tianjin University,Tianjin 300072,China;Institute of Solid State Physics,College of Physics and Electronic Science,Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials,Shanxi Datong University,Datong 037009,China;Nonlinear Physics Centre,Australian National University,Canberra,ACT 2601,Australia;School of Electrical and Computer Engineering,Oklahoma State University,Stillwater,Oklahoma 74078,USA
Spectrally tunable high-power Yb∶fiber chirped-pulse amplifier
VALENTINA SHUMAKOVA;VITO F.PECILE;JAKOB FELLINGER;MICHAEL LESKOWSCHEK;P.E.COLLIN ALDIA;ALINE S.MAYER;LUKAS W.PERNER;SARPER SALMAN;MINGQI FAN;PRANNAY BALLA;STéPHANE SCHILT;CHRISTOPH M.HEYL;INGMAR HARTL;GIL PORAT;OLIVER H.HECKL-Christian Doppler Laboratory for Mid-IR Spectroscopy and Semiconductor Optics,Faculty Center for Nano Structure Research,Faculty of Physics,University of Vienna,A-1090 Vienna,Austria;Photonics Institute,TU Wien,A-1040 Vienna,Austria;Vienna Doctoral School in Physics,University of Vienna,A-1090 Vienna,Austria;Deutsches Elektronen-Synchrotron DESY,22607 Hamburg,Germany;Laboratoire Temps-Fréquence,Université de Neuchatel,CH-2000 Neuchatel,Switzerland;GSI Helmholtzzentrum für Schwerionenforschung GmbH,64291 Darmstadt,Germany;Helmholtz-Institute Jena,07743 Jena,Germany;Department of Electrical and Computer Engineering,University of Alberta,Edmonton,Alberta T6G 1H9,Canada;Department of Physics,University of Alberta,Edmonton,Alberta T6G 2E1,Canada
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。