首站-论文投稿智能助手
典型文献
Synthesis ofNaYF4∶20%Yb3+,2%Er3+,2%Ce3+@NaYF4 nanorods and their size dependent uptake efficiency under flow condition
文献摘要:
Lanthanide doped fluorescent nanoparticles have gained considerable attention in biomedical applica-tions.However,the low uptake efficiency of nanoparticles by cells has limited their applications.In this work,we demonstrate how the uptake efficiency is affected by the size of nanoparticles under flow conditions.Using the same size NaYF4∶20%Yb3+,2%Er3+,2%Ce3+(the contents of rare earths elements are in molar fraction)nanoparticles as core,NaYF4∶20%Yb3+,2%Er3+,2%Ce3+@NaYF4 core-shell struc-tured nanorods(NRs)with different sizes of 60-224 nm were synthesized by thermal decomposition and hot injection method.Under excitation at 980 nm,a strong upconversion green emission(541 nm,2H11/2 → 4I15/2 of Er3+)is observed for all samples.The emission intensity for each size nanorod was calibrated and is found to depend on the width of NRs.Under flow conditions,the nanorods with 96 nm show a maximum uptake efficiency by endothelial cells.This work demonstrates the importance of optimizing the size for improving the uptake efficiency of lanthanide-doped nanoparticles.
文献关键词:
作者姓名:
Dongmei Qiu;Jie Hu;Peiyuan Wang;Decai Huang;Yaling Lin;Haina Tian;Xiaodong Yi;Qilin Zou;Haomiao Zhu
作者机构:
Fujian Normal University,Fuzhou 350007,China;CAS Key Laboratory of Design and Assembly of Functional Nanostructures,and Fujian Key Laboratory of Nanomaterials,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China;Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials,Xiamen Institute of Rare Earth Materials,Haixi Institutes,Chinese Academy of Sciences,Xiamen 361021,China;College of Materials Science and Engineering,Huaqiao University,Xiamen 361021,China;Research Center of Biomedical Engineering of Xiamen&Key Laboratory of Biomedical Engineering of Fujian Province&Fujian Provincial Key Laboratory for Soft Functional Materials Research,Department of Biomaterials,College of Materials,Xiamen University,Xiamen 361005,China;Centre D'Elaboration de Matériaux et D'Etudes Structurales(CEMES),CNRS,Université de Toulouse-UPS,29 Rue Jeanne Marvig,BP 94347,31055,Toulouse,Cedex 4,France
引用格式:
[1]Dongmei Qiu;Jie Hu;Peiyuan Wang;Decai Huang;Yaling Lin;Haina Tian;Xiaodong Yi;Qilin Zou;Haomiao Zhu-.Synthesis ofNaYF4∶20%Yb3+,2%Er3+,2%Ce3+@NaYF4 nanorods and their size dependent uptake efficiency under flow condition)[J].稀土学报(英文版),2022(10):1519-1526
A类:
ofNaYF4,2H11
B类:
Synthesis,Yb3+,Er3+,Ce3+,nanorods,their,dependent,uptake,efficiency,under,flow,Lanthanide,doped,fluorescent,nanoparticles,have,gained,considerable,attention,biomedical,However,by,cells,has,limited,applications,In,this,work,affected,conditions,Using,same,contents,rare,earths,elements,molar,fraction,core,shell,struc,tured,NRs,different,sizes,were,synthesized,thermal,decomposition,hot,injection,method,Under,excitation,strong,upconversion,green,emission,4I15,observed,all,samples,intensity,each,was,calibrated,found,width,show,maximum,endothelial,This,demonstrates,importance,optimizing,improving,lanthanide
AB值:
0.495749
相似文献
Targeting the Rac1 pathway for improved prostate cancer therapy using polymeric nanoparticles to deliver of NSC23766
Zean Li;Jun Huang;Tao Du;Yiming Lai;Kaiwen Li;Man-Li Luo;Dingjun Zhu;Jun Wu;Hai Huang-Department of Urology,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou 510220,China;Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou 510120,China;Medical Research Center,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou 510120,China;School of Biomedical Engineering,Sun Yat-sen University,Shenzhen 518107,China;Department of Obstetrics and Gynecology,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou 510120,China;Department of Urology,The Sixth Affiliated Hospital of Guangzhou Medical University,Qingyuan People's Hospital,Qingyuan 511518,China
Surface-rare-earth-rich upconversion nanoparticles induced by heterovalent cation exchange with superior loading capacity
Meifeng Wang;Yiru Qin;Wei Shao;ZhiWang Cai;Xiaoyu Zhao;Yongjun Hu;Tao Zhang;Sheng Li;Mark T.Swihart;Yang Liu;Wei Wei-MOE&Guangdong Provincial Key Laboratory of Laser Life Science,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes,College of Biophotonics,South China Normal University,Guangzhou 510631,China;Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology,Institute of Insect Science and Technology&School of Life Sciences,South China Normal University,Guangzhou 510631,China;State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310014,China;Department of Chemical and Biological Engineering,University at Buffalo,the State University of New York,Buffalo,NY 14260,United States
Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells
Shunliang Gao;Xiaohui Zhao;Qi Fu;Tianchi Zhang;Jun Zhu;Fuhua Hou;Jian Ni;Chengjun Zhu;Tiantian Li;Yanlai Wang;Vignesh Murugadoss;Gaber A.M.Mersal;Mohamed M.Ibrahim;Zeinhom M.El-Bahy;Mina Huang;Zhanhu Guo-The Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous Region,College of Physical Science and Technology,Inner Mongolia University,Hohhot 010021,China;Department of Electronic Science and Technology,School of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China;Advanced Materials Division,Engineered Multifunctional Composites(EMC)Nanotech LLC,Knoxville,TN 37934,United States;Integrated Composites Laboratory(ICL),Department of Chemical and Bimolecular Engineering,University of Tennessee,Knoxville,TN 37996,United States;Department of Chemistry,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia;Department of Chemistry,Faculty of Science,Al-Azhar University,Nasr City 11884,Cairo,Egypt;College of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China
Light-induced tumor theranostics based on chemical-exfoliated borophene
Zhongjian Xie;Yanhong Duo;Taojian Fan;Yao Zhu;Shuai Feng;Chuanbo Li;Honglian Guo;Yanqi Ge;Shakeel Ahmed;Weichun Huang;Huiling Liu;Ling Qi;Rui Guo;Defa Li;Paras N.Prasad;Han Zhang-Institute of Pediatrics,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Shenzhen Engineering Laboratory of phosphorene and Optoelectronics;International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education,Shenzhen Institute of Translational Medicine,Department of Otolaryngology,Shenzhen Second People's Hospital,the First Affiliated Hospital,Institute of Microscale Optoelectronics,Shenzhen University,518060 Shenzhen,China;Department of Microbiology,Tumor and Cell Biology(MTC),Karolinska Institute,Stockholm,Sweden;Shenzhen Medical Ultrasound Engineering Center,Department of Ultrasonography,Shenzhen People's Hospital,Second Clinical Medical College of Jinan University,First Clinical Medical College of Southern University of Science and Technology,518020 Shenzhen,China;Optoelectronics Research Center,School of Science,Minzu University of China,100081 Beijing,PR China;Nantong Key Lab of Intelligent and New Energy Materials,College of Chemistry and Chemical Engineering,Nantong University,226019 Nantong,Jiangsu,China;Key Laboratory of Biomaterials of Guangdong Higher Education Institutes,Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development,Department of Biomedical Engineering,Jinan University,510632 Guangzhou,China;Department of Core Medical Laboratory,the Sixth Affiliated Hospital of Guangzhou Medical University,Qingyuan People's Hospital,Qingyuan,Guang Dong Province,China;Department of Laboratory Medicine,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Institute for Lasers,Photonics,and Biophotonics and Department of Chemistry,University at Buffalo,State University of New York,Buffalo,NY,USA
Ultra-small platinum nanoparticles segregated by nickle sites for efficient ORR and HER processes
Lvhan Liang;Huihui jin;Huang Zhou;Bingshuai Liu;Chenxi Hu;Ding Chen;Jiawei Zhu;Zhe Wang;Hai-Wen Li;Suli Liu;Daping He;Shichun Mu-State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,Hubei,China;Foshan Xianhu Laboratory of the Advanced Energy Science and Technology,Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,Guangdong,China;Hubei Engineering Research Center of RF-Microwave Technology and Application,Wuhan University of Technology,Wuhan 430070,Hubei,China;Platform of Inter/Transdisciplinary Energy Research,International Research Center for Hydrogen Energy,International Institute for Carbon-Neutral Energy Research,Yushu University,Fukuoka 819-0395,Japan;Key Laboratory of Advanced Functional Materials of Nanjing,Nanjing Xiaozhuang University,Nanjing 211171,Jiangsu,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。