首站-论文投稿智能助手
典型文献
Arctic ozone loss in early spring and its impact on the stratosphere-troposphere coupling
文献摘要:
The tropospheric impact of Arctic ozone loss events is still debatable. In this study we investigate that question, using the ERA5 reanalysis and long-term integration by a climate-chemistry coupled model (CESM2-WACCM). We begin with the frequency of Arctic ozone loss events. On average, such events occur once in early spring every 14?15 years in ERA5 data and in the model, both of which estimate that roughly 40% of the strong polar vortex events in March are coupled with Arctic ozone loss, the remaining 60% being uncoupled. The composite difference between the two samples might be attributed to the pure impact of the Arctic ozone loss — that is, to ozone loss alone, without the concurrent impact of strong polar vortices. Arctic ozone loss is accompanied by an increase in total ozone in midlatitudes, with the maximum centered in the Central North Pacific. Contrasting Arctic ozone loss events with pure strong polar vortex events that are uncoupled with ozone loss, observations confirm that the stratospheric Northern Annular Mode reverses earlier for the former. For pure strong vortex events in early spring (without Arctic ozone loss), the cold anomalies can extend from the stratosphere to the middle troposphere; when such events are strong, the near surface warm anomalies are biased toward the continents. In contrast, during the other 40% of strong early-spring polar vortex events, those coupled with ozone loss, a concurrent and delayed warming of the near surface over the Arctic and its neighboring areas is observed, due to vertical redistribution of solar radiation by the change in the ozone.
文献关键词:
作者姓名:
ShuYang Yu;Jian Rao;Dong Guo
作者机构:
Key Laboratory of Meteorological Disaster,Ministry of Education (KLME) / Joint International Research Laboratory of Climate and Environment Change (ILCEC) / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD),Nanjing University of Information Science and Technology,Nanjing 210044,China;School of Atmospheric Science,Nanjing University of Information Science and Technology,Nanjing 210044,China;Reading Academy,Nanjing University of Information Science and Technology,Nanjing 210044,China
引用格式:
[1]ShuYang Yu;Jian Rao;Dong Guo-.Arctic ozone loss in early spring and its impact on the stratosphere-troposphere coupling)[J].地球与行星物理(英文),2022(02):177-190
A类:
B类:
Arctic,ozone,loss,early,spring,its,impact,stratosphere,troposphere,coupling,tropospheric,events,still,debatable,In,this,study,investigate,that,question,using,ERA5,reanalysis,long,term,integration,by,climate,chemistry,model,CESM2,WACCM,We,begin,frequency,On,average,such,occur,once,every,years,data,both,which,estimate,roughly,strong,polar,vortex,March,remaining,being,uncoupled,composite,difference,between,two,samples,might,attributed,pure,alone,without,concurrent,vortices,accompanied,increase,total,midlatitudes,maximum,centered,Central,Pacific,Contrasting,observations,confirm,stratospheric,Northern,Annular,Mode,reverses,earlier,former,For,cold,anomalies,can,extend,from,middle,when,near,surface,biased,toward,continents,contrast,during,other,those,delayed,warming,over,neighboring,areas,observed,due,vertical,redistribution,solar,radiation,change
AB值:
0.486667
相似文献
Long-term reconstruction of flash floods in the Qilian Mountains,China,based on dendrogeomorphic methods
QIE Jia-zhi;ZHANG Yong;TRAPPMANN Daniel;ZHONG Yi-hua;BALLESTEROS-CáNOVAS Juan Antonio;FAVILLIER Adrien;STOFFEL Markus-Key Laboratory of Land Surface Pattern and Simulation,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China;Climate Change Impacts and Risks in the Anthropocene(C-CIA),Institute for Environmental Sciences,University of Geneva,Geneva CH-1205,Switzerland;Dendrolab.ch,Department of Earth Sciences,University of Geneva,Geneva CH-1205,Switzerland;National Museum of Natural Sciences,MNCN-CSIC,C/Serrano 115bis,28006,Madrid,Spain;Department F.-A.Forel for Environmental and Aquatic Sciences,University of Geneva,Geneva CH-1205,Switzerland
Links between winter dust over the Tibetan Plateau and preceding autumn sea ice variability in the Barents and Kara Seas
Chao XU;Jie-Hua MA;Jian-Qi SUN;Chao YOU;Yao-Ming MA;Hui-Jun WANG;Tao WANG-Climate Change Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;CMA Earth System Modeling and Prediction Centre(CEMC),China Meteorological Administration,Beijing 100081,China;Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Key Laboratory of Meteorological Disaster(KLME),Ministry of Education&Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD),Nanjing University of Information Science&Technology,Nanjing 210044,China;College of Environment and Ecology,Chongqing University,Chongqing 400044,China;Land-Atmosphere Interaction and Its Climatic Effects Group,State Key Laboratory of Tibetan Plateau Earth System and Resources Environment(TPESRE),Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China;College of Earth and Planetary Sciences,University of Chinese Academy of Science,Beijing 100049,China;Center for Pan-third Pole Environment,Lanzhou University,Lanzhou 730000,China
Responses of Arctic sea ice to stratospheric ozone depletion
Jiankai Zhang;Wenshou Tian;John A.Pyle;James Keeble;Nathan Luke Abraham;Martyn P.Chipperfield;Fei Xie;Qinghua Yang;Longjiang Mu;Hong-Li Ren;Lin Wang;Mian Xu-College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,China;Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai),Zhuhai 519082,China;Department of Chemistry,University of Cambridge,Cambridge CB2 1EW,UK;National Centre for Atmospheric Science,Cambridge CB2 1EW,UK;School of Earth and Environment,University of Leeds,Leeds LS2 9JT,UK;College of Global Change and Earth System Science,Beijing Normal University,Beijing 100875,China;School of Atmospheric Sciences,Sun Yat-sen University,Zhuhai 519082,China;Pilot National Laboratory for Marine Science and Technology(Qingdao),Qingdao 266237,China;State Key Laboratory of Severe Weather,Institute of Tibetan Plateau&Polar Meteorology,Chinese Academy of Meteorological Sciences,Beijing 100081,China;Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。