典型文献
基于邻域粗糙集的极限学习机恶意DoH流量预警
文献摘要:
在对网络安全发起攻击的恶意DoH流量数据中,存在属性特征影响恶意DoH流量攻击目标达成,使用基于邻域粗糙集的极限学习机决策分析方法建立恶意DoH流量预警模型,可为恶意DoH流量预警提供决策支持.首先运用邻域粗糙集属性约简算法对高维DoH流量特征进行降维,并得到约简后的属性重要度,然后利用极限学习机算法测试评估约简后的属性特征对数据样本的分类正确率.应用实例表明,在保证样本类别比例与原数据集一致的前提下,约简后的属性特征对样本数据具有足够高的分类准确率,验证了文中所提基于邻域粗糙集的极限学习机决策分析方法能有效地简化恶意DoH流量安全评价的复杂度.
文献关键词:
DNS over HTTPS(DoH);恶意DoH流量预警;邻域粗糙集;极限学习机
中图分类号:
作者姓名:
骆公志;侯若娴;陈圣瑜
作者机构:
南京邮电大学管理学院,江苏南京 210003
文献出处:
引用格式:
[1]骆公志;侯若娴;陈圣瑜-.基于邻域粗糙集的极限学习机恶意DoH流量预警)[J].南京邮电大学学报(自然科学版),2022(06):79-85
A类:
DoH
B类:
邻域粗糙集,恶意,流量数据,属性特征,攻击目标,目标达成,决策分析,预警模型,决策支持,粗糙集属性约简,简算,高维,流量特征,属性重要度,极限学习机算法,算法测试,测试评估,应用实例,本类,分类准确率,安全评价,DNS,over,HTTPS
AB值:
0.243875
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。