典型文献
基于RBFNN数据延拓和CEEMDAN方法的径流序列组合预测
文献摘要:
为提高径流预测精度,采用径向基神经网络(RBFNN)数据延拓技术处理完全集合经验模态分解(CEEMDAN)方法中的端点效应问题,并根据分解结果特点构建RBFNN-ARIMA组合预测模型.以1957-2013年黄河源区唐乃亥水文站年径流数据为例,先将选定的序列采用RBFNN进行延拓,然后进行CEEMDAN分解,对得到的分解分量运用RBFNN-ARIMA组合模型进行预测重构得到年径流量预测结果.研究表明,原始序列经过RBFNN数据延拓后再进行CEEMDAN分解,其所得分量可以有效反映不同时间尺度上的波动特征;ARIMA模型对高频IMF1分量的拟合效果较差,对其他中低频分量拟合效果较好;RBFNN-ARIMA组合模型预测结果的平均相对误差为5.23%,相较于RBFNN模型和ARIMA模型预测精度分别提高了9.88%和5.62%.因此,运用基于CEEMDAN方法的"分解-预测-重构"模式进行水文预测,对原始序列进行合理延拓并针对各分量特点进行组合预测可有效提高预测精度.
文献关键词:
径流预测;完全集合经验模态分解;数据延拓;神经网络;黄河源区
中图分类号:
作者姓名:
张金萍;靳有来
作者机构:
郑州大学水利科学与工程学院,河南郑州 450001;郑州大学黄河生态保护与区域协调发展研究院,河南郑州450001
文献出处:
引用格式:
[1]张金萍;靳有来-.基于RBFNN数据延拓和CEEMDAN方法的径流序列组合预测)[J].水利水电技术(中英文),2022(01):55-62
A类:
B类:
RBFNN,数据延拓,CEEMDAN,径流序列,径流预测,径向基神经网络,技术处理,理完,完全集合经验模态分解,端点效应,解结,ARIMA,组合预测模型,黄河源区,唐乃亥水文站,径流数,流数据,预测重构,年径流量,径流量预测,不同时间尺度,波动特征,IMF1,拟合效果,中低频,低频分量,组合模型预测,平均相对误差,水文预测
AB值:
0.285441
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。