首站-论文投稿智能助手
典型文献
Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement
文献摘要:
Single-shot high-speed 3D imaging is important for reconstructions of dynamic objects. For fringe projection profilometry (FPP), however, it is still challenging to recover accurate 3D shapes of isolated objects by a single fringe image. In this paper, we demonstrate that the deep neural networks can be trained to directly recover the absolute phase from a unique fringe image that involves spatially multiplexed fringe patterns of different frequencies. The extracted phase is free from spectrum-aliasing problem which is hard to avoid for traditional spatial-multiplexing methods. Experiments on both static and dynamic scenes show that the proposed approach is robust to object motion and can obtain high-quality 3D recon-structions of isolated objects within a single fringe image.
文献关键词:
作者姓名:
Yixuan Li;Jiaming Qian;Shijie Feng;Qian Chen;Chao Zuo
作者机构:
Smart Computational Imaging(SCI)Laboratory,Nanjing University of Science and Technology,Nanjing 210094,China;Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense,Nanjing University of Science and Technology,Nanjing 210094,China
引用格式:
[1]Yixuan Li;Jiaming Qian;Shijie Feng;Qian Chen;Chao Zuo-.Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement)[J].光电进展(英文版),2022(05):33-48
A类:
structions
B类:
Deep,learning,enabled,dual,frequency,composite,fringe,projection,profilometry,single,shot,absolute,measurement,Single,high,speed,imaging,important,reconstructions,dynamic,objects,For,FPP,however,still,challenging,recover,accurate,shapes,isolated,by,image,In,this,paper,demonstrate,that,deep,neural,networks,can,be,trained,directly,phase,from,unique,involves,spatially,multiplexed,patterns,different,frequencies,extracted,free,spectrum,aliasing,problem,which,hard,avoid,traditional,multiplexing,methods,Experiments,both,static,scenes,show,proposed,approach,robust,motion,obtain,quality,within
AB值:
0.608675
相似文献
Deep learning acceleration of multiscale superresolution localization photoacoustic imaging
Jongbeom Kim;Gyuwon Kim;Lei Li;Pengfei Zhang;Jin Young Kim;Yeonggeun Kim;Hyung Ham Kim;Lihong V.Wang;Seungchul Lee;Chulhong Kim-Departments of Electrical Engineering,Mechanical Engineering,Convergence IT Engineering,and Interdisciplinary Bioscience and Bioengineering,Graduate School of Artificial Intelligence,Medical Device Innovation Center,Pohang University of Science and Technology(POSTECH),77 Cheongam-ro,Nam-gu,Pohang,Gyeongbuk 37673,Republic of Korea;Caltech Optical Imaging Laboratory,Andrew and Peggy Cherng Department of Medical Engineering,Department of Electrical Engineering,California Institute of Technology,1200 E.California Blvd.,MC 138-78,Pasadena,CA 91125,USA;School of Precision Instruments and Optoelectronics Engineering,Tianjin University,92 Weijin Road,Nankai District,Tianjin 300072,China;Opticho,532,CHANGeUP GROUND,87 Cheongam-ro,Nam-gu,Pohang,Gyeongsangbuk 37673,Republic of Korea
Terahertz structured light:nonparaxial Airy imaging using silicon diffractive optics
Rusnè lva?kevi?iūtè-Povilauskienè;Paulius Kizevi?ius;Ernestas Nacius;Domas Jokubauskis;K?stutis lkamas;Alvydas Lisauskas;Natalia Alexeeva;leva Matulaitienè;Vytautas Jukna;Sergej Orlov;Linas Minkevi?ius;Gintaras Valu?is-Department of Optoelectronics,Center for Physical Sciences and Technology,Sauletekio av.3,Vilnius 10257,Lithuania;Department of Fundamental Research,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Applied Electrodynamics&Telecommunications,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania;CENTERA Labs.,Institute of High Pressure Physics PAS,ul.Sokolowska 29/37,Warsaw 01-142,Poland;Department of Organic Chemistry,Center for Physical Sciences and Technology,Saulètekio av.3,Vilnius 10257,Lithuania;Institute of Photonics and Nanotechnology,Department of Physics,Vilnius University,Saulètekio av.3,Vilnius 10257,Lithuania
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。