首站-论文投稿智能助手
典型文献
Symmetry and monotonicity of positive solutions to Schr(o)dinger systems with fractional p-Laplacians
文献摘要:
In this paper,we first establish narrow region principle and decay at infinity theo-rems to extend the direct method of moving planes for general fractional p-Laplacian systems.By virtue of this method,we investigate the qualitative properties of positive solutions for the following Schr(o)dinger system with fractional p-Laplacian{ (-Δ)spu+aup-1 =f(u,v),(-Δ)tpv+bvp-1=g(u,v),where 0 < s,t < 1and 2 < p < ∞.We obtain the radial symmetry in the unit ball or the whole space RN(N ≥ 2),the monotonicity in the parabolic domain and the nonexistence on the half space for positive solutions to the above system under some suitable conditions on f and g,respectively.
文献关键词:
作者姓名:
MA Ling-wei;ZHANG Zhen-qiu
作者机构:
School of Mathematical Sciences,Tianjin Normal University,Tianjin 300387,China;School of Mathematical Sciences and LPMC,Nankai University,Tianjin 300071,China
引用格式:
[1]MA Ling-wei;ZHANG Zhen-qiu-.Symmetry and monotonicity of positive solutions to Schr(o)dinger systems with fractional p-Laplacians)[J].高校应用数学学报B辑(英文版),2022(01):52-72
A类:
Laplacians,rems,spu+aup,tpv+bvp
B类:
Symmetry,monotonicity,positive,solutions,Schr,dinger,systems,fractional,In,this,paper,we,first,establish,narrow,region,principle,decay,infinity,theo,extend,direct,method,moving,planes,general,By,virtue,investigate,qualitative,properties,following,where,1and,We,obtain,radial,symmetry,unit,ball,whole,space,RN,parabolic,domain,nonexistence,half,above,under,some,suitable,conditions,respectively
AB值:
0.565923
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。