首站-论文投稿智能助手
典型文献
A neurovascular unit-on-a-chip: culture and differentiation of human neural stem cells in a three-dimensional microfluidic environment
文献摘要:
Biological studies typically rely on a simple monolayer cell culture, which does not reflect the complex functional characteristics of human tissues and organs, or their real response to external stimuli. Microfluidic technology has advantages of high-throughput screening, accurate control of the fluid velocity, low cell consumption, long-term culture, and high integration. By combining the multipotential differentiation of neural stem cells with high throughput and the integrated characteristics of microfluidic technology, an in vitro model of a functionalized neurovascular unit was established using human neural stem cell-derived neurons, astrocytes, oligodendrocytes, and a functional microvascular barrier. The model comprises a multi-layer vertical neural module and vascular module, both of which were connected with a syringe pump. This provides controllable conditions for cell inoculation and nutrient supply, and simultaneously simulates the process of ischemic/hypoxic injury and the process of inflammatory factors in the circulatory system passing through the blood-brain barrier and then acting on the nerve tissue in the brain. The in vitro functionalized neurovascular unit model will be conducive to central nervous system disease research, drug screening, and new drug development.
文献关键词:
作者姓名:
Wen-Juan Wei;Ya-Chen Wang;Xin Guan;Wei-Gong Chen;Jing Liu
作者机构:
Stem Cell Clinical Research Center,National Joint Engineering Laboratory,Regenerative Medicine Center,the First Affiliated Hospital of Dalian Medical University,Dalian,Liaoning Province,China;Dalian Innovation Institute of Stem Cell and Precision Medicine,Dalian,Liaoning Province,China
引用格式:
[1]Wen-Juan Wei;Ya-Chen Wang;Xin Guan;Wei-Gong Chen;Jing Liu-.A neurovascular unit-on-a-chip: culture and differentiation of human neural stem cells in a three-dimensional microfluidic environment)[J].中国神经再生研究(英文版),2022(10):2260-2266
A类:
multipotential
B类:
neurovascular,unit,chip,culture,differentiation,human,neural,cells,three,dimensional,microfluidic,environment,Biological,studies,typically,rely,simple,monolayer,which,does,not,reflect,complex,characteristics,tissues,organs,their,real,response,external,stimuli,Microfluidic,technology,has,advantages,high,throughput,screening,accurate,velocity,low,consumption,long,term,integration,By,combining,integrated,vitro,model,functionalized,was,established,using,derived,neurons,astrocytes,oligodendrocytes,microvascular,barrier,comprises,vertical,module,both,were,connected,syringe,pump,This,provides,controllable,conditions,inoculation,nutrient,supply,simultaneously,simulates,process,ischemic,hypoxic,injury,inflammatory,factors,circulatory,system,passing,blood,brain,then,acting,nerve,will,be,conducive,central,nervous,disease,research,drug,new,development
AB值:
0.612515
相似文献
Spirulina platensis aqueous extracts ameliorate colonic mucosal damage and modulate gut microbiota disorder in mice with ulcerative colitis by inhibiting inflammation and oxidative stress
Jian WANG;Liqian SU;Lun ZHANG;Jiali ZENG;Qingru CHEN;Rui DENG;Ziyan WANG;Weidong KUANG;Xiaobao JIN;Shuiqing GUI;Yinghua XU;Xuemei LU-Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances,School of Life Science and Biopharmaceutics,Guangdong Pharmaceutical University,Guangzhou 510006,China;School of Pharmacy,Guangdong Pharmaceutical University,Guangzhou 510006,China;Intensive Care Unit,Shenzhen Second People's Hospital,the First Affiliated Hospital of Shenzhen University,Shenzhen 518031,China;Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products,National Institutes for Food and Drug Control,Beijing 102629,China
High-throughput"read-on-ski"automated imaging and label-free detection system for toxicity screening of compounds usingpersonalised human kidney organoids
Qizheng WANG;Jun LU;Ke FAN;Yiwei XU;Yucui XIONG;Zhiyong SUN;Man ZHAI;Zhizhong ZHANG;Sheng ZHANG;Yan SONG;Jianzhong LUO;Mingliang YOU;Meijin GUO;Xiao ZHANG-State Key Laboratory of Bioreactor Engineering,East China University of Science and Technology,Shanghai 200237,China;Guangzhou Institutes of Biomedicine and Health,Chinese Academy of Sciences,Guangzhou 510530,China;Bioland Laboratory(Guangzhou Regenerative Medicine and Health Guangdong Laboratory),Guangzhou 510320,China;Hangzhou Cancer Institute,Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province,Affiliated Hangzhou Cancer Hospital,Zhejiang University School of Medicine,Hangzhou 310002,China
Generation and characterization of stable pig pregastrulation epiblast stem cell lines
Minglei Zhi;Jinying Zhang;Qianzi Tang;Dawei Yu;Shuai Gao;Dengfeng Gao;Pengliang Liu;Jianxiong Guo;Tang Hai;Jie Gao;Suying Cao;Zimo Zhao;Chongyang Li;Xiaogang Weng;Mengnan He;Tianzhi Chen;Yingjie Wang;Keren Long;Deling Jiao;Guanglei Li;Jiaman Zhang;Yan Liu;Yu Lin;Daxin Pang;Qianqian Zhu;Naixin Chen;Jingjing Huang;Xinze Chen;Yixuan Yao;Jingcang Yang;Zicong Xie;Xianya Huang;Mengxin Liu;Ran Zhang;Qiuyan Li;Yiliang Miao;Jianhui Tian;Xingxu Huang;Hongsheng Ouyang;Bofeng Liu;Wei Xiei;Qi Zhou;Hongjiang Wei;Zhonghua Liu;Caihong Zheng;Mingzhou Li;Jianyong Han-State Key Laboratory of Agrobiotechnology,College of Biological Sciences,China Agricultural University,Beijing,China;Institute of Animal Genetics and Breeding,College of Animal Science and Technology,Sichuan Agricultural University,Chengdu,Sichuan,China;State Key Laboratory of Stem Cell and Reproductive Biology,Institute of Zoology,Chinese Academy of Sciences,Beijing,China;Institute for Stem Cell and Regenerative Medicine,Chinese Academy of Sciences,Beijing,China;Beijing Institute for Stem Cell and Regenerative Medicine,Beijing,China;Key Laboratory of Animal Genetics,College of Animal Science and Technology,China Agricultural University,Beijing,China;State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan,Yunnan Agricultural University,Kunming,Yunnan,China;Animal Science and Technology College,Beijing University of Agriculture,Beijing,China;Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province,College of Life Science,Northeast Agricultural University,Harbin,Heilongjiang,China;School of Life Science and Technology,ShanghaiTech University,Shanghai,China;Jilin Provincial Key Laboratory of Animal Embryo Engineering,College of Animal Sciences,Jilin University,Changchun,Jilin,China;Institute of Stem Cell and Regenerative Biology,College of Animal Science and Veterinary Medicine,Huazhong Agricultural University,Wuhan,Hubei,China;Center for Stem Cell Biology and Regenerative Medicine,MOE Key Laboratory of Bioinformatics,THU-PKU Center for Life Sciences,School of Life Sciences,Tsinghua University,Beijing,China;Key Laboratory of Genomic and Precision Medicine,Beijing Institute of Genomics,Chinese Academy of Sciences,and China National Center for Bioinformation,Beijing,China
Quantitative proteomics revealed extensive microenvironmental changes after stem cell transplantation in ischemic stroke
Yao Chen;Fahuan Song;Mengjiao Tu;Shuang Wu;Xiao He;Hao Liu;Caiyun Xu;Kai Zhang;Yuankai Zhu;Rui Zhou;Chentao Jin;Ping Wang;Hong Zhang;Mei Tian-Department of Nuclear Medicine and Medical PET Center,The Second Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou 310009,China;Institute of Nuclear Medicine and Molecular Imaging,Zhejiang University,Hangzhou 310009,China;Key Laboratory of Medical Molecular Imaging of Zhejiang Province,Hangzhou 310009,China;Department of Radiology,Zhejiang Hospital,Hangzhou 310030,China;Department of PET Center The First Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou 310006,China;Key Laboratory for Biomedical Engineering of Ministry of Education,Zhejiang University,Hangzhou 310027,China;College of Biomedical Engineering and Instrument Science,Zhejiang University,Hangzhou 310027,China;Shanxi Medical University,Taiyuan 030001,China
NFAT inhibitor 11R-VIVIT ameliorates mouse renal fibrosis after ischemia-reperfusion-induced acute kidney injury
Zhi-yong Xie;Wei Dong;Li Zhang;Meng-jie Wang;Zhen-meng Xiao;Yu-hua Zhang;Wan-xin Shi;Ying Huang;Yan Yang;Cui-li Li;Lei Fu;Xing-chen Zhao;Rui-zhao Li;Zhi-lian Li;Yuan-han Chen;Zhi-ming Ye;Shuang-xin Liu;Zheng Dong;Xin-ling Liang-The Second School of Clinical Medicine,Southern Medical University,Guangzhou 510515,China;Division of Nephrology,Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences,Guangzhou 510080,China;School of Medicine,South China University of Technology,Guangzhou 510006,China;Department of Cellular Biology and Anatomy,Medical College of Georgia at Augusta University,Augusta,GA,USA;Department of Medical Research,Charlie Norwood Veterans Affairs Medical Center,Augusta,GA,USA
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。