首站-论文投稿智能助手
典型文献
Salt tolerance in rice:Physiological responses and molecular mechanisms
文献摘要:
Crop yield loss due to soil salinization is an increasing threat to agriculture worldwide. Salt stress dras-tically affects the growth, development, and grain productivity of rice (Oryza sativa L.), and the improve-ment of rice tolerance to salt stress is a desirable approach for meeting increasing food demand. The main contributors to salt toxicity at a global scale are Na+and Cl? ions, which affect up to 50%of irrigated soils. Plant responses to salt stress occur at the organismic, cellular, and molecular levels and are pleiotropic, involving (1) maintenance of ionic homeostasis, (2) osmotic adjustment, (3) ROS scavenging, and (4) nutritional balance. In this review, we discuss recent research progress on these four aspects of plant physiological response, with particular attention to hormonal and gene expression regulation and salt tolerance signaling pathways in rice. The information summarized here will be useful for accelerating the breeding of salt-tolerant rice.
文献关键词:
作者姓名:
Citao Liu;Bigang Mao;Dingyang Yuan;Chengcai Chu;Meijuan Duan
作者机构:
College of Agriculture,Hunan Agricultural University,Changsha 410128,Hunan,China;State Key Laboratory of Hybrid Rice,Hunan Hybrid Rice Research Center,Changsha 410125,Hunan,China;State Key Laboratory of Plant Genomics,Institute of Genetics and Developmental Biology,The Innovative Academy for Seed Design,Chinese Academy of Sciences,Beijing 100101,China
引用格式:
[1]Citao Liu;Bigang Mao;Dingyang Yuan;Chengcai Chu;Meijuan Duan-.Salt tolerance in rice:Physiological responses and molecular mechanisms)[J].作物学报(英文版),2022(01):13-25
A类:
dras,organismic
B类:
Salt,tolerance,rice,Physiological,responses,molecular,mechanisms,Crop,yield,loss,due,salinization,increasing,threat,agriculture,worldwide,stress,tically,affects,growth,development,grain,productivity,Oryza,sativa,improve,salt,desirable,approach,meeting,food,demand,contributors,toxicity,global,scale,are,Na+and,Cl,ions,which,up,irrigated,soils,Plant,occur,cellular,levels,pleiotropic,involving,maintenance,ionic,homeostasis,osmotic,adjustment,ROS,scavenging,nutritional,balance,In,this,review,we,discuss,recent,research,progress,these,four,aspects,plant,physiological,particular,attention,hormonal,gene,expression,regulation,signaling,pathways,information,summarized,here,will,be,useful,accelerating,breeding,tolerant
AB值:
0.673413
相似文献
Agronomical selection on loss-of-function of GIGANTEA simultaneously facilitates soybean salt tolerance and early maturity
Lidong Dong;Zhihong Hou;Haiyang Li;Zhaobo Li;Chao Fang;Lingping Kong;Yongli Li;Hao Du;Tai Li;Lingshuang Wang;Milan He;Xiaohui Zhao;Qun Cheng;Fanjiang Kong;Baohui Liu-Guangdong Key Laboratory of Plant Adaptation and Molecular Design,Guangzhou Key Laboratory of Crop Gene Editing,Innovative Center of Molecular Genetics and Evolution,School of Life Sciences,Guangzhou University,Guangzhou Higher Education Mega Center,Guangzhou 510006,China;College of Agriculture,Heilongjiang Bayi Agricultural University,Daqing 510062,China;National Key Laboratory of Crop Genetics and Germplasm Enhancement,National Center for Soybean Improvement,Jiangsu Collaborative Innovation Center for Modern Crop Production,Nanjing Agricultural University,Nanjing 210095,China;College of Agriculture,Jilin Agricultural Science and Technology University,Jilin 132101,China;The Innovative Academy of Seed Design,Key Laboratory of Soybean Molecular Design Breeding,Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Harbin 150081,China
Regulation of nitrogen starvation responses by the alarmone(p)ppGpp in rice
Hanwen Li;Jinqiang Nian;Shuang Fang;Meng Guo;Xiahe Huang;Fengxia Zhang;Qing Wang;Jian Zhang;Jiaoteng Bai;Guojun Dong;Peiyong Xin;Xianzhi Xie;Fan Chen;Guodong Wang;Yingchun Wang;Qian Qian;Jianru Zuo;Jinfang Chu;Xiaohui Ma-State Key Laboratory of Plant Genomics,National Center for Plant Gene Research(Beijing),Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China;College of Advanced Agricultural Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;State Key Laboratory of Molecular Developmental Biology,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China;Innovation Academy for Seed Design,Chinese Academy of Sciences,Beijing 100101,China;State Key Laboratory of Rice Biology,China National Rice Research Institute,Chinese Academy of Agricultural Sciences,Hangzhou,Zhejiang 310006,China;Institute of Wetland Agriculture and Ecology,Shandong Academy of Agricultural Sciences,Jinan,Shandong 250100,China;Hainan Yazhou Bay Laboratory,Sanya,Hainan 572025,China;CAS Center for Excellence in Molecular Plant Sciences,Chinese Academy of Sciences,Beijing 100101,China
Nutrient uptake, physiological responses and growth of tobacco (Nicotiana tabacum L.) in soil under composite salt stress
Jian CUI;Dongrui YAO;Jing MA;Xiefeng YE;Ying PENG;Jiaqian SONG;Jinfeng LI;Yajun CHANG;John YANG;Zhen ZHANG;Xueli LI;Xiaojing LIU;Khalil KARIMAN-Institute of Botany,Jiangsu Province and Chinese Academy of Sciences,Nanjing 210014(China);National Tobacco Cultivation and Physiology and Biochemistry Research Center,Key Laboratory for Tobacco Cultivation of Tobacco Industry,College of Tobacco Science,Henan Agricultural University,Zhengzhou 450002(China);Shangluo Tobacco Company,Luonan Branch,Shangluo 726000(China);School of Environmental Science,Nanjing Xiaozhuang University,Nanjing 211171(China);Department of Agriculture and Environmental Science,Lincoln University of Missouri,Jefferson City MO 65201(USA);Staff Development Institute of China National Tobacco Corporation,Zhengzhou 450000(China);School of Agriculture and Environment,The University of Western Australia,Perth WA 6009(Australia)
The genome of Hibiscus hamabo reveals its adaptation to saline and waterlogged habitat
Zhiquan Wang;Jia-Yu Xue;Shuai-Ya Hu;Fengjiao Zhang;Ranran Yu;Dijun Chen;Yves Van de Peer;Jiafu Jiang;Aiping Song;Longjie Ni;Jianfeng Hua;Zhiguo Lu;Chaoguang Yu;Yunlong Yin;Chunsun Gu-Institute of Botany,Jiangsu Province and Chinese Academy of Sciences,Nanjing,210014,China;College of Horticulture,Academy for Advanced Interdisciplinary Studies,Nanjing Agricultural University,Nanjing 210095,China;State Key Laboratory of Pharmaceutical Biotechnology,School of Life Sciences,Nanjing University,Nanjing 210023,China;Department of Plant Biotechnology and Bioinformatics,Ghent University,VIB-UGent Center for Plant Systems Biology,B-9052 Ghent,Belgium;Department of Biochemistry,Genetics and Microbiology,University of Pretoria,Pretoria 0028,South Africa;College of Horticulture,Nanjing Agricultural University,Nanjing 210095,China;College of Forest Sciences,Nanjing Forestry University,Nanjing,210037,China;Jiangsu Key Laboratory for the Research and Utilization of Plant Resources,Jiangsu Utilization of Agricultural Germplasm,Nanjing,210014,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。