首站-论文投稿智能助手
典型文献
Geometric Upper Critical Dimensions of the Ising Model
文献摘要:
The upper critical dimension of the Ising model is known to be dc=4,above which critical behavior is regarded to be trivial.We hereby argue from extensive simulations that,in the random-cluster representation,the Ising model simultaneously exhibits two upper critical dimensions at(dc=4,dp=6),and critical clusters for d≥dp,except the largest one,are governed by exponents from percolation universality.We predict a rich variety of geometric properties and then provide strong evidence in dimensions from 4 to 7 and on complete graphs.Our findings significantly advance the understanding of the Ising model,which is a fundamental system in many branches of physics.
文献关键词:
作者姓名:
Sheng Fang;Zongzheng Zhou;Youjin Deng
作者机构:
Hefei National Research Center for Physical Sciences at the Microscales,University of Science and Technology of China,Hefei 230026,China;Min Jiang Collaborative Center for Theoretical Physics,College of Physics and Electronic Information Engineering,Minjiang University,Fuzhou 350108,China;ARC Centre of Excellence for Mathematical and Statistical Frontiers(ACEMS),School of Mathematics,Monash University,Clayton,Victoria 3800,Australia;Shanghai Research Center for Quantum Sciences,Shanghai 201315,China
引用格式:
[1]Sheng Fang;Zongzheng Zhou;Youjin Deng-.Geometric Upper Critical Dimensions of the Ising Model)[J].中国物理快报(英文版),2022(08):14-18
A类:
B类:
Geometric,Upper,Critical,Dimensions,Ising,Model,upper,critical,model,is,known,dc,above,which,behavior,regarded,trivial,We,hereby,argue,from,extensive,simulations,that,random,representation,simultaneously,exhibits,two,dimensions,dp,clusters,except,largest,are,governed,exponents,percolation,universality,predict,rich,variety,geometric,properties,then,provide,strong,evidence,complete,graphs,Our,findings,significantly,advance,understanding,fundamental,system,many,branches,physics
AB值:
0.646196
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。