典型文献
Local Well-posedness of the Derivative Schr?dinger Equation in Higher Dimension for Any Large Data
文献摘要:
In this paper,the authors consider the local well-posedness for the derivative Schr?dinger equation in higher dimension ut-i△u+|u|2(→γ·▽u)+u2(→λ·▽u)=0,(x,t)∈ Rn×R,→γ,→λ ∈ Rn;n≥2.It is shown that the Cauchy problem of the derivative Schr?dinger equation in higher dimension is locally well-posed in Hs(Rn)(s>n/2)for any large initial data.Thus this result can compare with that in one dimension except for the endpoint space H 2.
文献关键词:
中图分类号:
作者姓名:
Boling GUO;Zhaohui HUO
作者机构:
Institute of Applied Physics and Computational Mathematics,P.O.Box 8009,Beijing 100088,China;Institute of Mathematics,Academy of Mathematics and Systems Science,CAS,Beijing 100190,China;Hua Loo-Keng Key Laboratory of Mathematics,Chinese Academy of Sciences,Beijing 100190,China
文献出处:
引用格式:
[1]Boling GUO;Zhaohui HUO-.Local Well-posedness of the Derivative Schr?dinger Equation in Higher Dimension for Any Large Data)[J].数学年刊B辑(英文版),2022(06):977-998
A类:
+u2
B类:
Local,Well,posedness,Derivative,Schr,dinger,Equation,Higher,Dimension,Any,Large,Data,In,this,paper,authors,consider,well,derivative,equation,higher,dimension,u+,Rn,It,shown,that,Cauchy,problem,locally,Hs,any,large,initial,data,Thus,result,can,compare,one,except,endpoint,space
AB值:
0.58053
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。