首站-论文投稿智能助手
典型文献
Increase in yield and nitrogen use efficiency of double rice with long-term application of controlled-release urea
文献摘要:
Controlled-release urea (CRU) has better characteristics than conventional urea for synchronizing nitrogen (N) release with plant uptake. Understanding the effects of CRU on crop yield and N use efficiency (NUE) has long been the key to evaluate the performance of CRU. A long-term experiment over five consecutive years was conducted in Changsha, Hunan Province, China, to investigate the effects of polyethylene-coated urea with a 90-d release period on the yield and NUE of double rice (early and late crops are grown in the same year), the amount of residual soil mineral N and the soil–plant N balance, as well as on the economic benefits. Four N fertilizer treatments including CK (no N fertilizer), U (conventional urea), CRU1 (polyethylene-coated urea with equal N application rate to U) and CRU2 (20% reduction in N application rate of CRU1) were established. The results indicated that CRU1 application increased the yield and NUE of double rice by 11.0 and 13.5%, respectively, compared with U. Higher yield and NUE of late rice were found than in early rice in CRU treatments. Compared with conventional U, the yield and NUE of early rice in the CRU1 treatment were increased by 6.0 and 10.2%, respectively, and those of late rice were increased by 15.4 and 13.8%, respectively. There was no significant difference between CRU1 and CRU2 in double rice yield. Furthermore, CRU treatments (including CRU1 and CRU2) had higher apparent residual Nmin rate (ARNR) and apparent N recovery rate (ANRR), but lower apparent N loss (NS) than the conventional U treatment. Concentrations of NH4+-N and NO3–-N were greater in the surface soil (0–20 cm) and lower in the deeper soil layer (40–60 cm) with CRU treatments than in the U treatment after harvest. Moreover, CRU application produced a greater economic benefit than conventional U application. In general, CRU outperformed U fertilizer in terms of rice yield, NUE, soil–plant N balance, economic benefit, and CRU2 provided greater comprehensive benefits than CRU1. It is suggested that CRU application is beneficial for solving N management challenges in the production of rice.
文献关键词:
作者姓名:
TIAN Chang;SUN Ming-xue;ZHOU Xuan;LI Juan;XIE Gui-xian;YANG Xiang-dong;PENGJian-wei
作者机构:
College of Resources and Environment,Hunan Agricultural University/National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources,Changsha 410128,P.R.China;Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer,Ministry of Agriculture and Rural Affairs,Beijing 100081,P.R.China;Institute of Soil and Fertilizer,Hunan Academy of Agricultural Sciences,Changsha 410125,P.R.China
引用格式:
[1]TIAN Chang;SUN Ming-xue;ZHOU Xuan;LI Juan;XIE Gui-xian;YANG Xiang-dong;PENGJian-wei-.Increase in yield and nitrogen use efficiency of double rice with long-term application of controlled-release urea)[J].农业科学学报(英文),2022(07):2106-2118
A类:
CRU1,CRU2,ARNR,ANRR
B类:
Increase,yield,nitrogen,use,efficiency,double,rice,long,application,controlled,release,urea,Controlled,has,better,characteristics,than,conventional,synchronizing,plant,uptake,Understanding,effects,NUE,been,key,evaluate,performance,experiment,five,consecutive,years,was,conducted,Changsha,Hunan,Province,China,investigate,polyethylene,coated,period,early,late,crops,grown,same,amount,residual,soil,mineral,balance,well,economic,benefits,Four,fertilizer,treatments,including,equal,rate,reduction,were,established,results,indicated,that,increased,by,respectively,compared,Higher,found,Compared,those,There,significant,difference,between,Furthermore,had,higher,apparent,Nmin,recovery,but,lower,loss,NS,Concentrations,NH4+,NO3,greater,surface,deeper,layer,after,harvest,Moreover,produced,general,outperformed,terms,provided,comprehensive,It,suggested,beneficial,solving,management,challenges,production
AB值:
0.367829
相似文献
Acclimation of CH4 emissions from paddy soil to atmospheric CO2 enrichment in a growth chamber experiment
Haoyu Qian;Yaguo Jin;Jin Chen;Shan Huang;Yunlong Liu;Jun Zhang;Aixing Deng;Jianwen Zou;Genxing Pan;Yanfeng Ding;Yu Jiang;Kees Jan van Groenigen;Weijian Zhang-Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China;Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation,College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095,Jiangsu,China;Soil and Fertilizer&Resources and Environmental Institute,Jiangxi Academy of Agricultural Science,Nanchang 330200,Jiangxi,China;Jiangxi Key Laboratory of Crop Physiology,Ecology and Genetic Breeding,Jiangxi Agricultural University,Nanchang 330045,Jiangxi,China;Center of Agriculture and Climate Change,Institute of Resource,Ecosystem and Environment of Agriculture,Nanjing Agricultural University,Nanjing 210095,Jiangsu,China;Jiangsu Collaborative Innovation Center for Modern Crop Production/Key Laboratory of Crop Physiology and Ecology in Southern China,Nanjing Agricultural University,Nanjing 210095,Jiangsu,China;Department of Geography,College of Life and Environmental Sciences,University of Exeter,Exeter EX44RJ,UK
Contrasting patterns of accumulation, partitioning, and remobilization of biomass and phosphorus in a maize cultivar
Weina Zhang;Haigang Li;Junling Zhang;Jianbo Shen;Hamish Brown;Enli Wang-Key Laboratory of Plant-Soil Interactions,Ministry of Education,College of Resources and Environmental Sciences,China Agricultural University,Beijing 100193,China;School of Biological and Food Processing Engineering,Huanghuai University,Zhumadian 463000,Henan,China;Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources,Key Laboratory of Grassland Resource(IMAU),Ministry of Education,College of Grassland,Resources and Environment,Inner Mongolia Agricultural University,Hohhot 010018,Inner Mongolia,China;The New Zealand Institute for Plant&Food Research Limited,Private Bag 4704,Christchurch,New Zealand;CSIRO Agriculture and Food,GPO Box 1700,Canberra,ACT 2601,Australia
Runoff and nutrient losses in alfalfa(Medicago sativa L)production with tied-ridge-furrow rainwater harvesting on sloping land
Qi Wang;Fuchun Li;Xiaole Zhao;Wucheng Zhao;Dengkui Zhang;Xujiao Zhou;David J.Sample;Xiaoyun Wang;Qinglin Liu;Xiaoling Li;Guang Li;Heling Wang;Kai Zhang;Jin Chen-College of Grassland Science,Gansu Agricultural University,Lanzhou,730070,China;Tongwei County Agricultural Technology Extension Center,Dingxi,743300,China;Department of Biological Systems Engineering,Hampton Roads Agricultural Research and Extension Center,Virginia Polytechnic Institute and State Univ.,Virginia Beach,VA,USA;Gansu Provincial Key Laboratory of Aridland Crop Science,Gansu Agricultural University,Lanzhou,730070,China;College of Water Conservancy and Hydropower Engineering,Gansu Agricultural University,Lanzhou,730070,China;College of Forestry,Gansu Agricultural University,Lanzhou,730070,China;Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province,Key Open Laboratory of Arid Change and Disaster Reduction of CMA,Institute of Arid Meteorology,China Meteorological Administration,Lanzhou,730020,China;Dingxi Institute of Soil and Water Conservation,Dingxi,743000,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。