首站-论文投稿智能助手
典型文献
High-frequency climatic fluctuations over the past 30 ka in northwestern margin of the East Asian monsoon region, China
文献摘要:
Whether millennial- to centennial-scale climate variations throughout the Holocene convey universal climate change is still widely debated. In this study, we aimed to obtain a set of high-resolution multi-proxy data (1343 particle size samples, 893 total organic carbon samples, and 711 pollen samples) from an alluvial-lacustrine-aeolian sequence based on an improved age-depth model in the northwestern margin of the East Asian monsoon region to explore the dynamics of climate changes over the past 30 ka. Results revealed that the sequence not only documented the major climate events that corresponded well with those reported from the North Atlantic regions but also revealed many marked and high-frequency oscillations at the millennial- and centennial-scale. Specifically, the late stage of the last glacial lasting from 30.1 to 18.1 cal. ka BP was a dry and cold period. The deglacial (18.1–11.5 cal. ka BP) was a wetting (probably also warming) period, and three cold and dry excursions were found in the wetting trend, i.e., the Oldest Dryas (18.1–15.8 cal. ka BP), the Older Dryas (14.6–13.7 cal. ka BP), and the Younger Dryas (12.5–11.5 cal. ka BP). The Holocene can be divided into three portions: the warmest and wettest early portion from 11.5 to 6.7 cal. ka BP, the dramatically cold and dry middle portion from 6.7 to 3.0 cal. ka BP, and the coldest and driest late portion since 3.0 cal. ka BP. Wavelet analysis results on the total pollen concentration revealed five substantially periodicities: c. 5500, 2200, 900, 380, and 210 a. With the exception of the c. 5500 a quasi-cycle that was causally associated with the Atlantic meridional overturning circulation, the other four quasi-cycles (i.e., c. 2200, 900, 380, and 210 a) were found to be indirectly causally associated with solar activities. This study provides considerable insight into the dynamic mechanism of the Asian climate on a long-time scale and future climatic change.
文献关键词:
作者姓名:
WU Huining;CUI Qiaoyu
作者机构:
Bailie School of Petroleum Engineering,Lanzhou City University,Lanzhou 730070,China;Key Laboratory of Land Surface Pattern and Simulation,Institute of Geographical Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China
文献出处:
引用格式:
[1]WU Huining;CUI Qiaoyu-.High-frequency climatic fluctuations over the past 30 ka in northwestern margin of the East Asian monsoon region, China)[J].干旱区科学,2022(12):1331-1343
A类:
deglacial,wettest
B类:
High,frequency,climatic,fluctuations,past,ka,northwestern,margin,East,Asian,monsoon,China,Whether,millennial,centennial,scale,climate,variations,throughout,Holocene,convey,universal,still,widely,debated,In,this,study,aimed,obtain,set,high,resolution,multi,proxy,data,particle,size,samples,total,organic,carbon,pollen,from,alluvial,lacustrine,aeolian,sequence,improved,depth,model,explore,dynamics,changes,Results,revealed,that,not,only,documented,major,events,corresponded,well,those,reported,North,Atlantic,regions,but,also,many,marked,oscillations,Specifically,late,stage,lasting,was,dry,wetting,probably,warming,three,excursions,were,found,trend,Oldest,Dryas,Older,Younger,can,be,divided,into,portions,warmest,early,dramatically,middle,coldest,driest,since,Wavelet,analysis,results,concentration,five,substantially,periodicities,With,exception,quasi,causally,associated,meridional,overturning,circulation,other,four,cycles,indirectly,solar,activities,This,provides,considerable,insight,mechanism,long,future
AB值:
0.516065
相似文献
Response of soil respiration to environmental and photosynthetic factors in different subalpine forest?cover types in a loess alpine hilly region
Yuanhang Li;Sha Lin;Qi Chen;Xinyao Ma;Shuaijun Wang;Kangning He-School of Soil and Water Conservation,Key Laboratory of State Forestry Administration On Soil and Water Conservation,Beijing Forestry University,Beijing 100083, People's Republic of China;Beijing Engineering Research Center of Soil and Water Conservation,Beijing Forestry University,Beijing 100083, People's Republic of China;Engineering Research Center of Forestry Ecological Engineering,Ministry of Education,Beijing Forestry University,Beijing 100083,People's Republic of China;North China Power Engineering Co.,Ltd.of China Power Engineering Consulting Group,Changchun 130021, People's Republic of China;Power China Huadong Engineering Corporation Limited, Hangzhou 311122,People's Republic of China
Long-term reconstruction of flash floods in the Qilian Mountains,China,based on dendrogeomorphic methods
QIE Jia-zhi;ZHANG Yong;TRAPPMANN Daniel;ZHONG Yi-hua;BALLESTEROS-CáNOVAS Juan Antonio;FAVILLIER Adrien;STOFFEL Markus-Key Laboratory of Land Surface Pattern and Simulation,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China;Climate Change Impacts and Risks in the Anthropocene(C-CIA),Institute for Environmental Sciences,University of Geneva,Geneva CH-1205,Switzerland;Dendrolab.ch,Department of Earth Sciences,University of Geneva,Geneva CH-1205,Switzerland;National Museum of Natural Sciences,MNCN-CSIC,C/Serrano 115bis,28006,Madrid,Spain;Department F.-A.Forel for Environmental and Aquatic Sciences,University of Geneva,Geneva CH-1205,Switzerland
Anthropogenic origin of a change in the fire-climate relationship in northern China after~2000 yr BP:Evidence from a 15,500-year black carbon record from Dali Lake
ZHANG Zhiping;LIU Jianbao;CHEN Shengqian;ZHANG Shanjia;JIA Xin;ZHOU Aifeng;ZHAO Jiaju;CHEN Jie;SHEN Zhongwei;CHEN Fahu-Key Laboratory of Western China's Environmental Systems(Ministry of Education),College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,China;Group of Alpine Paleoecology and Human Adaptation(ALPHA),State Key Laboratory of Tibetan Plateau Earth System,Resources and Environment(TPESRE),Institute of Tibetan Plateau Research,CAS,Beijing 100101,China;CAS Center for Excellence in Tibetan Plateau Earth Sciences,CAS,Beijing 100101,China;School of Geography,Nanjing Normal University,Nanjing 210023,China;State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS,Xi'an 710061,China
Viscous creep of ice-rich permafrost debris in a recently uncovered proglacial area in the Tianshan Mountains,China
Yu ZHOU;Guo-Yu LI;Hui-Jun JIN;Sergey S.MARCHENKO;Wei MA;Qing-Song DU;Jin-Ming LI;Dun CHEN-State Key Laboratory of Frozen Soils Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China;University of Chinese Academy of Sciences,Beijing 100049,China;Da Xing'anling Observation and Research Station of Frozen-ground Engineering and Environment,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Jagdaqi 165000,China;School of Civil Engineering and Institute of Cold Regions Science and Engineering,Northeast Forestry University,Harbin 150040,China;Geophysical Institute,University of Alaska Fairbanks,Fairbanks,AK 99775,USA
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。