典型文献
Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs
文献摘要:
Background:Recently, machine learning (ML) has become attractive in genomic prediction, but its superiority in genomic prediction over conventional (ss) GBLUP methods and the choice of optimal ML methods need to be investigated. Results:In this study, 2566 Chinese Yorkshire pigs with reproduction trait records were genotyped with the GenoBaits Porcine SNP 50 K and PorcineSNP50 panels. Four ML methods, including support vector regression (SVR), kernel ridge regression (KRR), random forest (RF) and Adaboost.R2 were implemented. Through 20 replicates of fivefold cross-validation (CV) and one prediction for younger individuals, the utility of ML methods in genomic prediction was explored. In CV, compared with genomic BLUP (GBLUP), single-step GBLUP (ssGBLUP) and the Bayesian method BayesHE, ML methods significantly outperformed these conventional methods. ML methods improved the genomic prediction accuracy of GBLUP, ssGBLUP, and BayesHE by 19.3%, 15.0%and 20.8%, respectively. In addition, ML methods yielded smaller mean squared error (MSE) and mean absolute error (MAE) in all scenarios. ssGBLUP yielded an improvement of 3.8%on average in accuracy compared to that of GBLUP, and the accuracy of BayesHE was close to that of GBLUP. In genomic prediction of younger individuals, RF and Adaboost.R2_KRR performed better than GBLUP and BayesHE, while ssGBLUP performed comparably with RF, and ssGBLUP yielded slightly higher accuracy and lower MSE than Adaboost.R2_KRR in the prediction of total number of piglets born, while for number of piglets born alive, Adaboost.R2_KRR performed significantly better than ssGBLUP. Among ML methods, Adaboost.R2_KRR consistently performed well in our study. Our findings also demonstrated that optimal hyperparameters are useful for ML methods. After tuning hyperparameters in CV and in predicting genomic outcomes of younger individuals, the average improvement was 14.3%and 21.8%over those using default hyperparameters, respectively. Conclusion:Our findings demonstrated that ML methods had better overall prediction performance than conventional genomic selection methods, and could be new options for genomic prediction. Among ML methods, Adaboost.R2_KRR consistently performed well in our study, and tuning hyperparameters is necessary for ML methods. The optimal hyperparameters depend on the character of traits, datasets etc.
文献关键词:
中图分类号:
作者姓名:
Xue Wang;Shaolei Shi;Guijiang Wang;Wenxue Luo;Xia Wei;Ao Qiu;Fei Luo;Xiangdong Ding
作者机构:
Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture and Rural Affairs,National Engineering Laboratory of Animal Breeding,College of Animal Science and Technology,China Agricultural University,Beijing,China;Hebei Province Animal Husbandry and Improved Breeds Work Station,Shijiazhuang,Hebei,China;Zhangjiakou Dahao Heshan New Agricultural Development Co.,Ltd,Zhangjiakou,Hebei,China
文献出处:
引用格式:
[1]Xue Wang;Shaolei Shi;Guijiang Wang;Wenxue Luo;Xia Wei;Ao Qiu;Fei Luo;Xiangdong Ding-.Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs)[J].畜牧与生物技术杂志(英文版),2022(05):1293-1304
A类:
GenoBaits,PorcineSNP50,BayesHE
B类:
Using,machine,learning,accuracy,genomic,prediction,reproduction,traits,pigs,Background,Recently,ML,has,become,attractive,but,superiority,conventional,methods,choice,optimal,need,investigated,Results,In,this,study,Chinese,Yorkshire,records,were,genotyped,panels,Four,including,support,vector,regression,SVR,kernel,ridge,KRR,random,forest,RF,Adaboost,implemented,Through,replicates,fivefold,cross,validation,CV,one,younger,individuals,utility,was,explored,compared,single,step,ssGBLUP,Bayesian,significantly,outperformed,these,improved,by,respectively,addition,yielded,smaller,mean,squared,error,MSE,absolute,MAE,scenarios,improvement,average,that,close,better,than,while,comparably,slightly,higher,lower,total,number,piglets,born,alive,Among,consistently,well,Our,findings,also,demonstrated,hyperparameters,useful,After,tuning,predicting,outcomes,those,using,default,Conclusion,had,overall,performance,selection,could,new,options,necessary,depend,character,datasets,etc
AB值:
0.383627
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。