首站-论文投稿智能助手
典型文献
Controllable blood–brain barrier (BBB) regulation based on gigahertz acoustic streaming
文献摘要:
The blood–brain barrier (BBB) is a structural and functional barrier necessary for brain homeostasis, and it plays an important role in the realization of neural function and in protecting the brain from damage by circulating toxins and pathogens. However, the extremely dense BBB also severely limits the transport of molecules across it, which is a great hindrance to the diagnosis and treatment of central nervous system (CNS) diseases. This paper reports a new method for controllable opening of the BBB, based on the gigahertz acoustic streaming (AS) generated by a bulk acoustic wave resonant device. By adjusting the input power and working distance of the device, AS with tunable flow rate can be generated to disrupt tight junction proteins (TJs) between endothelial cells. The results obtained with this method show that the gigahertz AS promotes the penetration of dextran molecules with different molecular weights across the BBB. This work provides a new platform for studying the mechanical regulation of BBB by fluid shear forces and a new method for improving the efficiency of drug delivery.
文献关键词:
作者姓名:
Hang Qi;Shuaihua Zhang;Jiaxue Liang;Shan He;Yanyan Wanga
作者机构:
State Key Laboratory of Precision Measuring Technology and Instruments,School of Precision Instrument and Opto-Electronics Engineering,Tianjin University,Tianjin 300072,China
引用格式:
[1]Hang Qi;Shuaihua Zhang;Jiaxue Liang;Shan He;Yanyan Wanga-.Controllable blood–brain barrier (BBB) regulation based on gigahertz acoustic streaming)[J].纳米技术与精密工程(英文),2022(04):1-7
A类:
B类:
Controllable,blood,brain,barrier,BBB,regulation,gigahertz,acoustic,streaming,structural,functional,necessary,homeostasis,plays,important,role,realization,neural,protecting,from,damage,by,circulating,toxins,pathogens,However,extremely,dense,also,severely,limits,transport,molecules,across,which,great,hindrance,diagnosis,treatment,central,nervous,system,CNS,diseases,This,paper,reports,new,method,controllable,opening,AS,generated,bulk,wave,resonant,device,By,adjusting,input,power,working,distance,tunable,flow,can,disrupt,tight,junction,proteins,TJs,between,endothelial,cells,results,obtained,this,show,that,promotes,penetration,dextran,different,molecular,weights,provides,platform,studying,mechanical,fluid,shear,forces,improving,efficiency,drug,delivery
AB值:
0.623847
相似文献
A nanotheranostic agent based on Nd3+-doped YVO4 with blood-brain-barrier permeability for NIR-Ⅱ fluorescence imaging/magnetic resonance imaging and boosted sonodynamic therapy of orthotopic glioma
Zhijia Lv;Longhai Jin;Yue Cao;Hao Zhang;Dongzhi Xue;Na Yin;Tianqi Zhang;Yinghui Wang;Jianhua Liu;Xiaogang Liu;Hongjie Zhang-State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry(CIAC),Chinese Academy of Sciences,130022 Changchun,China;University of Science and Technology of China,230026 Hefei,Anhui,China;Ganjiang Innovation Academy,Chinese Academy of Sciences,341000 Ganzhou,Jiangxi,China;Department of Radiology,The Second Hospital of Jilin University,130041 Changchun,China;Department of Neurosurgery,The First Hospital of Jilin University,130041 Changchun,China;Department of Chemistry,National University of Singapore,Singapore 117543,Singapore;Department of Chemistry,Tsinghua University,100084 Beijing,China
Highly efficient acousto-optic modulation using nonsuspended thin-fil1m lithium niobate-chalcogenide hybrid waveguides
Lei Wan;Zhiqiang Yang;Wenfeng Zhou;Meixun Wen;Tianhua Feng;Siqing Zeng;Dong Liu;Huan Li;Jingshun Pan;Ning Zhu;Weiping Liu;Zhaohui Li-Department of Electronic Engineering,College of Information Science and Technology,Jinan University,510632 Guangzhou,China;Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems,Sun Yat-sen University,510275 Guangzhou,China;State Key Laboratory for Modern Optical Instrumentation,College of Optical Science and Engineering,International Research Center for Advanced Photonics,Zhejiang University,Zijingang Campus,310058 Hangzhou,China;Institute of Semiconductor Science and Technology,Guangdong Engineering Technology Research Center of Low Carbon and New Energy Materials,South China Normal University,510631 Guangzhou,China;Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai),519000 Zhuhai,China
Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization
Xia Cai;Fengcai Liu;Anran Yu;Jiajun Qin;Mohammad Hatamvand;Irfan Ahmed;Jiayan Luo;Yiming Zhang;Hao Zhang;Yiqiang Zhan-School of Information Science and Technology,Fudan University,Shanghai 200433,China;College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China;Center of Micro-Nano System,Fudan University,Shanghai 200433,China;Department of Physics,Chemistry and Biology,Link?ping University,Link?ping SE-58183,Sweden;Key Laboratory of Micro and Nano Photonic Structures and Department of Optical Science and Engineering,Fudan University,Shanghai 200433,China;Yiwu Research Institute of Fudan University,Chengbei Road,Yiwu City,Zhejiang 322000,China
Data-driven design of high-performance MASnxPb1-xI3 perovskite materials by machine learning and experimental realization
Xia Cai;Fengcai Liu;Anran Yu;Jiajun Qin;Mohammad Hatamvand;Irfan Ahmed;Jiayan Luo;Yiming Zhang;Hao Zhang;Yiqiang Zhan-School of Information Science and Technology,Fudan University,Shanghai 200433,China;College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China;Center of Micro-Nano System,Fudan University,Shanghai 200433,China;Department of Physics,Chemistry and Biology,Link?ping University,Link?ping SE-58183,Sweden;Key Laboratory of Micro and Nano Photonic Structures and Department of Optical Science and Engineering,Fudan University,Shanghai 200433,China;Yiwu Research Institute of Fudan University,Chengbei Road,Yiwu City,Zhejiang 322000,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。