首站-论文投稿智能助手
典型文献
Breath monitoring,sleep disorder detection,and tracking using thin-film acoustic waves and open-source electronics
文献摘要:
Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and diagnosing tools of apnoea disorders are needed to facilitate better treatment,with advantages such as accuracy,comfort of use,cost effectiveness,and embedded computation capabilities to recognise,store,process,and transmit time series data.In this work we present an adaptation of our apnoea-Pi open-source surface acoustic wave(SAW)platform(Apnoea-Pi)to monitor and recognise apnoea in patients.The platform is based on a thin-film SAW device using bimorph ZnO and Al structures,including those fabricated as Al foils or plates,to achieve breath tracking based on humidity and temperature changes.We applied open-source electronics and provided embedded computing characteristics for signal processing,data recognition,storage,and transmission of breath signals.We show that the thin-film SAW device out-performed standard and off-the-shelf capacitive electronic sensors in terms of their response and accuracy for human breath-tracking purposes.This in combination with embedded electronics makes a suitable platform for human breath monitoring and sleep disorder recognition.
文献关键词:
作者姓名:
Jethro Vernon;Pep Canyelles-Pericas;Hamdi Torun;Richard Binns;Wai Pang Ng;Qiang Wu;Yong-Qing Fu
作者机构:
Faculty of Engineering and Environment,University of Northumbria,Newcastle upon Tyne NE1 8ST,United Kingdom;Department of Integrated Devicesand Systems,MESA+Institute for Nanotechnology,University of Twente,Enschede 7522 NB,The Netherlands
引用格式:
[1]Jethro Vernon;Pep Canyelles-Pericas;Hamdi Torun;Richard Binns;Wai Pang Ng;Qiang Wu;Yong-Qing Fu-.Breath monitoring,sleep disorder detection,and tracking using thin-film acoustic waves and open-source electronics)[J].纳米技术与精密工程(英文),2022(03):9-17
A类:
Apnoea,apnoea,bimorph
B类:
Breath,monitoring,sleep,detection,tracking,using,thin,film,acoustic,waves,open,source,electronics,major,affects,many,adults,causes,several,issues,such,fatigue,high,blood,pressure,liver,conditions,increased,risk,type,II,diabetes,heart,problems,Therefore,advanced,diagnosing,tools,disorders,are,needed,facilitate,better,treatment,advantages,accuracy,comfort,cost,effectiveness,embedded,computation,capabilities,recognise,store,transmit,series,data,In,this,work,we,present,adaptation,Pi,surface,SAW,platform,patients,device,ZnO,structures,including,those,fabricated,foils,plates,achieve,breath,humidity,temperature,changes,We,applied,provided,computing,characteristics,processing,recognition,storage,transmission,signals,show,that,out,performed,standard,off,shelf,capacitive,sensors,terms,their,response,human,purposes,This,combination,makes,suitable
AB值:
0.560912
相似文献
High-performance polarization management devices based on thin-film lithium niobate
Zhongjin Lin;Yanmei Lin;Hao Li;Mengyue Xu;Mingbo He;Wei Ke;Heyun Tan;Ya Han;Zhaohui Li;Dawei Wang;X.Steve Yao;Songnian Fu;Siyuan Yu;Xinlun Cai-State Key Laboratory of Optoelectronic Materials and Technologies,School of Electronics and Information Technology,Sun Yat-sen University,510275 Guangzhou,China;Department of Electrical and Computer Engineering,The University of British Columbia,Vancouver,BC V6T 1Z4,Canada;Photonics Information Innovation Center and Hebei Provincial Center for Optical Sensing Innovations,College of Physics Science and Technology,Hebei University,071002 Baoding,China;Institute of Advanced Photonics Technology,School of Information Engineering,Guangdong University of Technology,510006 Guangzhou,China
Highly efficient acousto-optic modulation using nonsuspended thin-fil1m lithium niobate-chalcogenide hybrid waveguides
Lei Wan;Zhiqiang Yang;Wenfeng Zhou;Meixun Wen;Tianhua Feng;Siqing Zeng;Dong Liu;Huan Li;Jingshun Pan;Ning Zhu;Weiping Liu;Zhaohui Li-Department of Electronic Engineering,College of Information Science and Technology,Jinan University,510632 Guangzhou,China;Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems,Sun Yat-sen University,510275 Guangzhou,China;State Key Laboratory for Modern Optical Instrumentation,College of Optical Science and Engineering,International Research Center for Advanced Photonics,Zhejiang University,Zijingang Campus,310058 Hangzhou,China;Institute of Semiconductor Science and Technology,Guangdong Engineering Technology Research Center of Low Carbon and New Energy Materials,South China Normal University,510631 Guangzhou,China;Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai),519000 Zhuhai,China
Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform
Chengli Wang;Jin Li;Ailun Yi;Zhiwei Fang;Liping Zhou;Zhe Wang;Rui Niu;Yang Chen;Jiaxiang Zhang;Ya Cheng;Junqiu Liu;Chun-Hua Dong;Xin Ou-State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,200050 Shanghai,China;The Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,100049 Beijing,China;CAS Key Laboratory of Quantum Information,University of Science and Technology of China,230026 Hefei,China;CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,230026 Hefei,China;The Extreme Optoelectromechanics Laboratory(XXL),School of Physics and Electronic Science,East China Normal University,200241 Shanghai,China;State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,201800 Shanghai,China;International Quantum Academy,518048 Shenzhen,China;Hefei National Laboratory,University of Science and Technology of China,Hefei 230026,China
A combined multiscale modeling and experimental study on surface modification of high-volume micro-nanoparticles with atomic accuracy
Zoushuang Li;Junren Xiang;Xiao Liu;Xiaobo Li;Lijie Li;Bin Shan;Rong Chen-State Key Laboratory of Digital Manufacturing Equipment and Technology,School of Mechanical Science and Engineering,Huazhong University of Science and Technology,1037 Luoyu Road,Wuhan,Hubei 430074,People's Republic of China;Wuhan University of Technology,Wuhan,Hubei 430063,People's Republic of China;School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan,Hubei 430074,People's Republic of China;College of Engineering,Swansea University,SA1 8EN Swansea,United Kingdom;State Key Laboratory of Material Processing and Die and Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan,Hubei 430074,People's Republic of China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。