首站-论文投稿智能助手
典型文献
Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
文献摘要:
Topological photonic states(TPSs)as a new type of waveguide state with one-way transport property can resist backscattering and are impervious to defects,disorders and metallic obstacles.Gyromagnetic photonic crystal(GPC)is the first artificial microstructure to implement TPSs,and it is also one of the most important platforms for generating truly one-way TPSs and exploring their novel physical properties,transport phenomena,and advanced applications.Herein,we present a brief review of the fundamental physics,novel properties,and practical applications of TPSs based on GPCs.We first examine chiral one-way edge states existing in uniformly magnetized GPCs of ordered and disordered lattices,antichiral one-way edge states in cross magnetized GPCs,and robust one-way bulk states in heterogeneously magnetized GPCs.Then,we discuss the strongly coupling effect between two co-propagating(or counter-propagating)TPSs and the resulting physical phenomena and device applications.Finally,we analyze the key issues and prospect the future development trends for TPSs in GPCs.The purpose of this brief review is to provide an overview of the main features of TPSs in GPC systems and offer a useful guidance and motivation for interested scientists and engineers working in related scientific and technological areas.
文献关键词:
作者姓名:
Jianfeng Chen;Zhi-Yuan Li
作者机构:
School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510640,China
引用格式:
[1]Jianfeng Chen;Zhi-Yuan Li-.Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications)[J].中国物理B(英文版),2022(11):2-12
A类:
gyromagnetic,Gyromagnetic,GPCs,antichiral
B类:
Topological,photonic,states,crystals,Physics,properties,applications,TPSs,new,type,waveguide,one,way,transport,property,can,resist,backscattering,impervious,defects,disorders,metallic,obstacles,first,artificial,microstructure,implement,also,most,important,platforms,generating,truly,exploring,their,novel,physical,phenomena,advanced,Herein,present,brief,review,fundamental,physics,practical,We,examine,edge,existing,uniformly,magnetized,disordered,lattices,cross,robust,bulk,heterogeneously,Then,discuss,strongly,coupling,effect,between,two,propagating,counter,resulting,device,Finally,analyze,key,issues,prospect,future,development,trends,purpose,this,provide,overview,main,features,systems,offer,useful,guidance,motivation,interested,scientists,engineers,working,related,scientific,technological,areas
AB值:
0.505075
相似文献
Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface
Yi Liu;Chunmei Ouyang;Quan Xu;Xiaoqiang Su;Quanlong Yang;Jiajun Ma;Yanfeng Li;Zhen Tian;Jianqiang Gu;Liyuan Liu;Jiaguang Han;Yunlong Shi;Weili Zhang-Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China;Institute of Solid State Physics, College of Physics and Electronic Science, Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong 037009, China;Nonlinear Physics Centre, Australian National University, Canberra, ACT 2601, Australia;School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA;e-mail: cmouyang@tju.edu.cn;e-mail: xiaoqiang.su@sxdtdx.edu.cn;e-mail: weili.zhang@okstate.edu
Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface
YI LIU;CHUNMEI OUYANG;QUAN XU;XIAOQIANG SU;QUANLONG YANG;JIAJUN MA;YANFENG LI;ZHEN TIAN;JIANQIANG GU;LIYUAN LIU;JIAGUANG HAN;YUNLONG SHI;WEILI ZHANG-Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering,Key Laboratory of Optoelectronic Information Technology(Ministry of Education of China),Tianjin University,Tianjin 300072,China;Institute of Solid State Physics,College of Physics and Electronic Science,Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials,Shanxi Datong University,Datong 037009,China;Nonlinear Physics Centre,Australian National University,Canberra,ACT 2601,Australia;School of Electrical and Computer Engineering,Oklahoma State University,Stillwater,Oklahoma 74078,USA
Chirality-switchable acoustic vortex emission via non-Hermitian selective excitation at an exceptional point
Tuo Liu;Shuowei An;Zhongming Gu;Shanjun Liang;He Gao;Guancong Ma;Jie Zhu-Key Laboratory of Noise and Vibration Research,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong,China;The Hong Kong Polytechnic University Shenzhen Research Institute,Shenzhen 518057,China;Institute of Acoustics,School of Physics Science and Engineering,Tongji University,Shanghai 200092,China;Division of Science,Engineering and Health Studies,College of Professional and Continuing Education,The Hong Kong Polytechnic University,Hong Kong,China;Department of Physics,Hong Kong Baptist University,Hong Kong,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。