首站-论文投稿智能助手
典型文献
Recent advances of defect-induced spin and valley polarized states in graphene
文献摘要:
Electrons in graphene have fourfold spin and valley degeneracies owing to the unique bipartite honeycomb lattice and an extremely weak spin-orbit coupling,which can support a series of broken symmetry states.Atomic-scale defects in graphene are expected to lift these degenerate degrees of freedom at the nanoscale,and hence,lead to rich quantum states,highlighting promising directions for spintronics and valleytronics.In this article,we mainly review the recent scanning tunneling microscopy(STM)advances on the spin and/or valley polarized states induced by an individual atomic-scale defect in graphene,including a single-carbon vacancy,a nitrogen-atom dopant,and a hydrogen-atom chemisorption.Lastly,we give a perspective in this field.
文献关键词:
作者姓名:
Yu Zhang;Liangguang Jia;Yaoyao Chen;Lin He;Yeliang Wang
作者机构:
School of Integrated Circuits and Electronics,MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices,Beijing Institute of Technology,Beijing 100081,China;Advanced Research Institute of Multidisciplinary Sciences,Beijing Institute of Technology,Beijing 100081,China;Center for Advanced Quantum Studies,Department of Physics,Beijing Normal University,Beijing 100875,China
引用格式:
[1]Yu Zhang;Liangguang Jia;Yaoyao Chen;Lin He;Yeliang Wang-.Recent advances of defect-induced spin and valley polarized states in graphene)[J].中国物理B(英文版),2022(08):52-60
A类:
degeneracies
B类:
Recent,advances,induced,polarized,states,graphene,Electrons,have,fourfold,owing,unique,bipartite,honeycomb,lattice,extremely,weak,orbit,coupling,which,support,series,broken,symmetry,Atomic,defects,are,expected,lift,these,degenerate,degrees,freedom,nanoscale,hence,lead,rich,quantum,highlighting,promising,directions,spintronics,valleytronics,In,this,article,mainly,review,recent,scanning,tunneling,microscopy,STM,by,individual,atomic,including,single,carbon,vacancy,nitrogen,dopant,hydrogen,chemisorption,Lastly,give,perspective,field
AB值:
0.631655
相似文献
Boosting photocatalytic activity through tuning electron spin states and external magnetic fields
Chengxiao Peng;Wenjuan Fan;Qian Li;Wenna Han;Xuefeng Chen;Guangbiao Zhang;Yuli Yan;Qinfen Gu;Chao Wang;Huarong Zhang;Peiyu Zhang-Institute for Computational Materials Science,School of Physics and Electronics,Henan University,Kaifeng 475004,China;International Joint Research Laboratory of New Energy Materials and Devices of Henan Province,Kaifeng 475004,China;National Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,China;State Key Laboratory of Advanced Special Steels,Shanghai Key Laboratory of Advanced Ferrometallurgy,School of Materials Science and Engineering,Shanghai University,Shanghai 200444,China;Australian Synchrotron,ANSTO,800 Blackburn Rd,Clayton,3168,VIC,Australia
A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler
Tongyao Zhang;Hanwen Wang;Xiuxin Xia;Ning Yan;Xuanzhe Sha;Jinqiang Huang;Kenji Watanabe;Takashi Taniguchi;Mengjian Zhu;Lei Wang;Jiantou Gao;Xilong Liang;Chengbing Qin;Liantuan Xiao;Dongming Sun;Jing Zhang;Zheng Han;Xiaoxi Li-State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics,Shanxi University,Taiyuan 030006,China;Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China;Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;School of Material Science and Engineering,University of Science and Technology of China,Anhui 230026,China;Research Center for Functional Materials,National Institute for Materials Science,1-1 Namiki,Tsukuba 305-0044,Japan;International Center for Materials Nanoarchitectonics,National Institute for Materials Science,1-1 Namiki,Tsukuba 305-0044,Japan;College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China;The Key Laboratory of Science and Technology on Silicon Devices,Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China;The University of Chinese Academy of Sciences,Beijing 100029,China;State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Laser Spectroscopy,Shanxi University,Taiyuan 030006,China
Generation and manipulation of skyrmions and other topological spin structures with rare metals
Chu Ye;Lin-Lin Li;Yun Shu;Qian-Rui Li;Jing Xia;Zhi-Peng Hou;Yan Zhou;Xiao-Xi Liu;Yun-You Yang;Guo-Ping Zhao-College of Physics and Electronic Engineering,Sichuan Normal University,Chengdu 610068,China;Center for Magnetism and Spintronics,Sichuan Normal University,Chengdu 610068,China;Guangdong Provincial Key Laboratory of Optical Information Materials and Technology,Guangzhou 510006,China;Institute for Advanced Materials,South China Normal University,South China Academy of Advanced Optoeletronics,Guangzhou 510006,China;School of Science and Engineering,The Chinese University of Hong Kong,Shenzhen 518172,China;Department of Electrical and Computer Engineering,Shinshu University,Nagano 380-8553,Japan
Chirality-switchable acoustic vortex emission via non-Hermitian selective excitation at an exceptional point
Tuo Liu;Shuowei An;Zhongming Gu;Shanjun Liang;He Gao;Guancong Ma;Jie Zhu-Key Laboratory of Noise and Vibration Research,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong,China;The Hong Kong Polytechnic University Shenzhen Research Institute,Shenzhen 518057,China;Institute of Acoustics,School of Physics Science and Engineering,Tongji University,Shanghai 200092,China;Division of Science,Engineering and Health Studies,College of Professional and Continuing Education,The Hong Kong Polytechnic University,Hong Kong,China;Department of Physics,Hong Kong Baptist University,Hong Kong,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。