首站-论文投稿智能助手
典型文献
Janus VXY monolayers with tunable large Berry curvature
文献摘要:
The Rashba effect and valley polarization provide a novel paradigm in quantum information technology.However,practical materials are scarce.Here,we found a new class of Janus monolayers VXY(X=Cl,Br,I;Y=Se,Te)with excellent val-ley polarization effect.In particular,Janus VBrSe shows Zeeman type spin splitting of 14 meV,large Berry curvature of 182.73 bohr2,and,at the same time,a large Rashba parameter of 176.89 meV·?.We use the k·p theory to analyze the relationship between the lattice constant and the curvature of the Berry.The Berry curvature can be adjusted by changing the lattice parameter,which will greatly improve the transverse velocities of carriers and promote the efficiency of the valley Hall device.By applying biaxial strain onto VBrSe,we can see that there is a correlation between Berry curvature and lattice constant,which further valid-ates the above theory.All these results provide tantalizing opportunities for efficient spintronics and valleytronics.
文献关键词:
作者姓名:
Wenrong Liu;Xinyang Li;Changwen Zhang;Shishen Yan
作者机构:
School of Physics and Technology,Spintronics Institute,University of Jinan,Jinan 250022,China
引用格式:
[1]Wenrong Liu;Xinyang Li;Changwen Zhang;Shishen Yan-.Janus VXY monolayers with tunable large Berry curvature)[J].半导体学报(英文版),2022(04):101-110
A类:
VXY,VBrSe,bohr2,tantalizing
B类:
Janus,monolayers,tunable,large,Berry,curvature,Rashba,effect,polarization,provide,novel,paradigm,quantum,information,technology,However,practical,materials,are,scarce,Here,found,new,class,Cl,Te,excellent,In,particular,shows,Zeeman,type,splitting,meV,same,parameter,We,use,theory,analyze,relationship,between,lattice,constant,can,adjusted,by,changing,which,will,greatly,improve,transverse,velocities,carriers,promote,efficiency,Hall,device,By,applying,biaxial,strain,onto,see,that,there,is,correlation,further,valid,ates,above,All,these,results,opportunities,efficient,spintronics,valleytronics
AB值:
0.544039
相似文献
Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization
Jitao Li;Guocui Wang;Zhen Yue;Jingyu Liu;Jie Li;Chenglong Zheng;Yating Zhang;Yan Zhang;Jianquan Yao-Key Laboratory of Opto-Electronics Information Technology(Tianjin University),Ministry of Education,School of Precision Instruments and Opto-Electronics Engineering,Tianjin University,Tianjin 300072,China;Beijing Engineering Research Center for Mixed Reality and Advanced Display,School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China;Beijing Key Laboratory for Metamaterials and Devices,Key Laboratory of Terahertz Optoelectronics,Ministry of Education,and Beijing Advanced Innovation Center for Imaging Technology,Department of Physics,Capital Normal University,Beijing 100048,China
Enhanced reversibility of the magnetoelastic transition in(Mn,Fe)2(P,Si)alloys via minimizing the transition-induced elastic strain energy
Xuefei Miao;Yong Gong;Fengqi Zhang;Yurong You;Luana Caron;Fengjiao Qian;Wenhui Guo;Yujing Zhang;Yuanyuan Gong;Feng Xu;Niels van Dijk;Ekkes Brück-MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;Fundamental Aspects of Materials and Energy,Department of Radiation Science and Technology,Delft University of Technology,Mekelweg 15,Delft,JB 2629,Netherlands;Department of Physics,Bielefeld University,Bielefeld 33501,Germany;Helmholtz-Zentrum Berlin für Materialien und Energie,Berlin 12489,Germany;College of Physics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
Evidence for moiré intralayer excitons in twisted WSe2/WSe2 homobi layer superlattices
Biao Wu;Haihong Zheng;Shaofei Li;Junnan Ding;Jun He;Yujia Zeng;Keqiu Chen;Zongwen Liu;Shula Chen;Anlian Pan;Yanping Liu-School of Physics and Electronics,Hunan Key Laboratory for Super-microstructure and Ultrafast Process,Central South University,932 South Lushan Road,Changsha,Hunan 410083,China;State Key Laboratory of High-Performance Complex Manufacturing,Central South University,932 South Lushan Road,Changsha,Hunan 410083,China;Department of Applied Physics,School of Physics and Electronics,Hunan University,Changsha 410082,China;School of Chemical and Biomolecular Engineering,The University of Sydney,Sydney,NSW 2006,Australia;The University of Sydney Nano Institute,The University of Sydney,Sydney,NSW 2006,Australia;Hunan Institute of Optoelectronic Integration,College of Materials Science and Engineering,Hunan University,Changsha,Hunan 410082,China;Shenzhen Research Institute of Central South University,A510a,Virtual University Building,Southern District,High-tech Industrial Park,Yuehai Street,Nanshan District,Shenzhen,China
Light-induced tumor theranostics based on chemical-exfoliated borophene
Zhongjian Xie;Yanhong Duo;Taojian Fan;Yao Zhu;Shuai Feng;Chuanbo Li;Honglian Guo;Yanqi Ge;Shakeel Ahmed;Weichun Huang;Huiling Liu;Ling Qi;Rui Guo;Defa Li;Paras N.Prasad;Han Zhang-Institute of Pediatrics,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Shenzhen Engineering Laboratory of phosphorene and Optoelectronics;International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education,Shenzhen Institute of Translational Medicine,Department of Otolaryngology,Shenzhen Second People's Hospital,the First Affiliated Hospital,Institute of Microscale Optoelectronics,Shenzhen University,518060 Shenzhen,China;Department of Microbiology,Tumor and Cell Biology(MTC),Karolinska Institute,Stockholm,Sweden;Shenzhen Medical Ultrasound Engineering Center,Department of Ultrasonography,Shenzhen People's Hospital,Second Clinical Medical College of Jinan University,First Clinical Medical College of Southern University of Science and Technology,518020 Shenzhen,China;Optoelectronics Research Center,School of Science,Minzu University of China,100081 Beijing,PR China;Nantong Key Lab of Intelligent and New Energy Materials,College of Chemistry and Chemical Engineering,Nantong University,226019 Nantong,Jiangsu,China;Key Laboratory of Biomaterials of Guangdong Higher Education Institutes,Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development,Department of Biomedical Engineering,Jinan University,510632 Guangzhou,China;Department of Core Medical Laboratory,the Sixth Affiliated Hospital of Guangzhou Medical University,Qingyuan People's Hospital,Qingyuan,Guang Dong Province,China;Department of Laboratory Medicine,Shenzhen Children's Hospital,Shenzhen,Guangdong,China;Institute for Lasers,Photonics,and Biophotonics and Department of Chemistry,University at Buffalo,State University of New York,Buffalo,NY,USA
Room-temperature third-order nonlinear Hall effect in Weyl semimetal TalrTe4
Cong Wang;Rui-Chun Xiao;Huiying Liu;Zhaowei Zhang;Shen Lai;Chao Zhu;Hongbing Cai;Naizhou Wang;Shengyao Chen;Ya Deng;Zheng Liu;Shengyuan A.Yang;Wei-Bo Gao-College of Mathematics and Physics,Beijing University of Chemical Technology,Beijing 100029,China;Division of Physics and Applied Physics,School of Physical and Mathematical Sciences,Nanyang Technological University,Singapore 637371,Singapore;Institute of Physical Science and Information Technology,Anhui University,Hefei 230601,China;Research Laboratory for Quantum Materials,Singapore University of Technology and Design,Singapore 487372,Singapore;School of Materials Science and Engineering,Nanyang Technological University,Singapore 639798,Singapore;CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology,Beijing 100190,China;The Photonics Institute and Centre for Disruptive Photonic Technologies,Nanyang Technological University,Singapore 637371,Singapore
Stronger Hardy-like proof of quantum contextuality
WEN-RONG QI;JIE ZHOU;LING-JUN KONG;ZHEN-PENG XU;HUI-XIAN MENG;RUI LIU;ZHOU-XIANG WANG;CHENGHOU TU;YONGNAN LI;ADáN CABELLO;JING-LING CHEN;HUI-TIAN WANG-Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics,Nankai University,Tianjin 300071,China;School of Physics,Henan Normal University,Xinxiang 453007,China;Theoretical Physics Division,Chern Institute of Mathematics,Nankai University,Tianjin 300071,China;National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China;Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China;Naturwissenschaftlich-Technische Fakult?t,Universit?t Siegen,57068 Siegen,Germany;Departamento de Fisica Aplicada Ⅱ,Universidad de Sevilla,E-41012 Sevilla,Spain
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。