首站-论文投稿智能助手
典型文献
Geometric phase under the Unruh effect with intermediate statistics
文献摘要:
Utilizing the geometric phase(GP)acquired in a quantum evolution,we manifest the thermality and quantum nature of the Unruh effect of an accelerating detector.We consider an UDW detector coupling to a conformal field in Minkowski spacetime,whose response spectrum exhibits an intermediate statistics of(1+1)any on field.We find that comparing to an inertial moving detector,the GP in accelerating frame is modified after the nonunitary evolution of the detector due to the Unruh effect.We show that such modification can distinguish the different thermalizing ways of the detector,which depends on the scaling dimension of the conformal primary field.Finally,we estimate the difference between the GP under the Unruh radiation and that in a thermal bath for a static observer,which reveals the quantum origin of the Unruh effect rather than a conventional thermal noise.
文献关键词:
作者姓名:
Jun Feng;Jing-Jun Zhang;Qianyi Zhang
作者机构:
School of Physics,Xi'an Jiaotong University,Xi'an 710049,China
引用格式:
[1]Jun Feng;Jing-Jun Zhang;Qianyi Zhang-.Geometric phase under the Unruh effect with intermediate statistics)[J].中国物理B(英文版),2022(05):53-59
A类:
Unruh,thermality,UDW,nonunitary,thermalizing
B类:
Geometric,phase,under,effect,intermediate,statistics,Utilizing,geometric,GP,acquired,quantum,evolution,manifest,nature,accelerating,detector,We,consider,coupling,conformal,field,Minkowski,spacetime,whose,response,spectrum,exhibits,1+1,any,find,that,comparing,inertial,moving,frame,modified,after,due,show,such,modification,can,distinguish,different,ways,which,depends,scaling,dimension,primary,Finally,estimate,difference,between,radiation,bath,static,observer,reveals,origin,rather,than,conventional,noise
AB值:
0.492226
相似文献
Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules
Ananya Das;Evgeny V.Kundelev;Anna A.Vedernikova;Sergei A.Cherevkov;Denis V.Danilov;Aleksandra V.Koroleva;Evgeniy V.Zhizhin;Anton N.Tsypkin;Aleksandr P.Litvin;Alexander V.Baranov;Anatoly V.Fedorov;Elena V.Ushakova;Andrey L.Rogach-Center of Information Optical Technologies,ITMO University,Saint Petersburg 197101,Russia;Research Park,Saint Petersburg State University,Saint Petersburg 199034,Russia;Laboratory of Femtosecond Optics and Femtotechnology,ITMO University,Saint Petersburg 197101,Russia;Laboratory of Quantum Processes and Measurements,ITMO University,Saint Petersburg 197101,Russia;Department of Materials Science and Engineering,and Centre for Functional Photonics(CFP),City University of Hong Kong,Kowloon,Hong Kong SAR 999077,China;Shenzhen Research Institute,City University of Hong Kong,Shenzhen 518057,China
Gapless quantum spin liquid and global phase diagram of the spin-1/2 J1-J2 square antiferromagnetic Heisenberg model
Wen-Yuan Liu;Shou-Shu Gong;Yu-Bin Li;Didier Poilblanc;Wei-Qiang Chen;Zheng-Cheng Gu-Department of Physics,The Chinese University of Hong Kong,Hong Kong,China;Department of Physics,Beihang University,Beijing 100191,China;Laboratoire de Physique Théorique,C.N.R.S,and Université de Toulouse,Toulouse 31062,France;Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen 518055,China;Department of Physics and Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China;International Quantum Academy,and Shenzhen Branch,Hefei National Laboratory,Shenzhen 518040,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。