首站-论文投稿智能助手
典型文献
Soliton molecules and asymmetric solitons of the extended Lax equation via velocity resonance
文献摘要:
We investigate the techniques for velocity resonance and apply them to construct soliton molecules using two solitons of the extended Lax equation.What is more,each soliton molecule can be transformed into an asymmetric soliton by changing the parameter φ.In addition,the collision between soliton molecules (or asymmetric soliton) and several soliton solutions is observed.Finally,some related pictures are presented.
文献关键词:
作者姓名:
Hongcai Ma;Yuxin Wang;Aiping Deng
作者机构:
Department of Applied Mathematics,Donghua University,Shanghai 201620,China;Institute for Nonlinear Sciences,Donghua University,Shanghai 201620,China
引用格式:
[1]Hongcai Ma;Yuxin Wang;Aiping Deng-.Soliton molecules and asymmetric solitons of the extended Lax equation via velocity resonance)[J].中国物理B(英文版),2022(01):128-134
A类:
B类:
Soliton,molecules,asymmetric,solitons,extended,Lax,equation,via,velocity,resonance,We,investigate,techniques,apply,them,construct,using,two,What,more,each,can,transformed,into,by,changing,parameter,In,addition,collision,between,several,solutions,observed,Finally,some,related,pictures,are,presented
AB值:
0.563099
相似文献
Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform
Chengli Wang;Jin Li;Ailun Yi;Zhiwei Fang;Liping Zhou;Zhe Wang;Rui Niu;Yang Chen;Jiaxiang Zhang;Ya Cheng;Junqiu Liu;Chun-Hua Dong;Xin Ou-State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,200050 Shanghai,China;The Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,100049 Beijing,China;CAS Key Laboratory of Quantum Information,University of Science and Technology of China,230026 Hefei,China;CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,230026 Hefei,China;The Extreme Optoelectromechanics Laboratory(XXL),School of Physics and Electronic Science,East China Normal University,200241 Shanghai,China;State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,201800 Shanghai,China;International Quantum Academy,518048 Shenzhen,China;Hefei National Laboratory,University of Science and Technology of China,Hefei 230026,China
Generation of single solitons tunable from 3 to 3.8 μm in cascaded Er3+-doped and Dy3+-doped fluoride fiber amplifiers
Linpeng Yu;Jinhui Liang;Shiting Huang;Jinzhang Wang;Jiachen Wang;Xing Luo;Peiguang Yan;Fanlong Dong;Xing Liu;Qitao Lue;Chunyu Guo;Shuangchen Ruan-Shenzhen Key Laboratory of Laser Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen 518118, China;Han’s Laser Technology Industry Group Co., Ltd., Shenzhen 518057, China;e-mail: scruan@sztu.edu.cn
Generation of single solitons tunable from 3 to 3.8 um in cascaded Er3+-doped and Dy3+-doped fluoride fiber amplifiers
LINPENG YU;JINHUI LIANG;SHITING HUANG;JINZHANG WANG;JIACHEN WANG;XING LUO;PEIGUANG YAN;FANLONG DONG;XING LIU;QITAO LUE;CHUNYU GUO;SHUANGCHEN RUAN-Shenzhen Key Laboratory of Laser Engineering,Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China;Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes,Shenzhen Technology University,Shenzhen 518118,China;Han's Laser Technology Industry Group Co.,Ltd.,Shenzhen 518057,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。