典型文献
Co诱导双位点协同效应实现高效肼电催化氧化
文献摘要:
作为一种重要的能量载体,肼(N2H4)具有能量密度高、反应动力学快、常温下呈液态和燃烧无含碳副产物生成等优点,因此,肼电氧化反应(HzOR)成为解决能源危机以及相关环境问题的理想选择之一.与传统的氢和醇基燃料电池相比,直接肼燃料电池(DHFC,N2H4/O2,Eocp=1.56 V)更适合实际应用.然而,DHFC受到HzOR缓慢动力学的限制,导致较高的过电位和较大的电池电压损耗,因此,距离实现商业化仍有一定差距.此外,N2H4辅助水分解系统(HAWS)用于制氢,可以显著降低水分解的电解槽电压,以实现节能制氢.因此,迫切需要开发性能优异的HzOR催化剂和进行深入的理论研究.长期以来,过渡金属磷化物由于具有良好的HzOR催化活性而备受关注,但是其本征活性较低,且对其催化机理研究不够深入.人们希望更好地了解金属磷化物上肼电氧化的电化学反应行为,同时大量研究表明可以通过优化反应动力学来提升催化体系性能.本文通过钴调节Ni2P电极表面的HzOR,引入双活性位点效应从而优化肼的脱氢动力学.通过简单地在Ni2P中掺杂Co,(Ni0.6Co0.4)2P电极上仅需113 mV即可驱动50 mA cm-2,明显低于Ni2P (174 mV)和Co2P (180 mV).组装的DHFC对(Ni0.6Co0.4)2P电极的峰功率密度为263.0 mW cm-2,比Ni2P (200.8 mW cm-2)和Pt/C (131.8 mW cm-2)分别高30%和99.5%,展现出了应用潜力.与此同时,(Ni0.6Co0.4)2P电极耦合Co2P析氢电极组成肼辅助水分解体系,两电极极化曲线结果表明,此系统驱动10mA cm-2的电流密度只需要0.228 V的超低电解槽电压.然而,相同条件下完整水分解体系需要高达1.784 V的电解槽电压来驱动相同的电流密度.可见,HAWS系统用HzOR代替OER制氢具有可行性和实用性实验和理论研究结果表明,Co掺杂可以显著降低N2H4在Ni位点上的吸附能,并改变HzOR的决速步骤.对应的(Ni0.6Co0.4)2P电极表面HzOR的塔菲尔斜率为136 mV dec-1,介于Co2P电极(216 mV dec-1)和Ni2P电极(121 mV dec-1)之间,并且决速步骤的能垒也显著地降低(0.37 vs.0.75 eV),表明Co的引入显著地调谐了Ni2P的电子结构,实现了与HzOR更匹配的催化剂设计.与此同时,对反应过程中的活性位点分析表明,Co的引入还可以作为最佳反应配位条件下的中心活性位点,以降低RDS对HzOR的自由能.
文献关键词:
肼电氧化反应;直接肼燃料电池;电催化剂;活性;磷化镍
中图分类号:
作者姓名:
周波;李梦雨;李莹莹;刘彦伯;逯宇轩;李巍;吴雨洁;霍甲;王燕勇;陶李;王双印
作者机构:
湖南大学化学化工学院,化学/生物传感与化学计量学国家重点实验室,湖南长沙410082
文献出处:
引用格式:
[1]周波;李梦雨;李莹莹;刘彦伯;逯宇轩;李巍;吴雨洁;霍甲;王燕勇;陶李;王双印-.Co诱导双位点协同效应实现高效肼电催化氧化)[J].催化学报,2022(04):1131-1138
A类:
肼电氧化反应,直接肼燃料电池,DHFC,Eocp,HAWS
B类:
双位,电催化氧化,N2H4,能量密度,密度高,反应动力学,常温下,液态,含碳,副产物,HzOR,能源危机,O2,过电位,压损,水分解,制氢,低水分,电解槽,槽电压,开发性,过渡金属磷化物,催化活性,催化机理,电化学反应,反应行为,优化反应,学来,催化体系,体系性能,Ni2P,双活,活性位点,氢动力,Ni0,6Co0,mV,Co2P,功率密度,mW,Pt,析氢,极组,解体,电极极化,极化曲线,线结,10mA,电流密度,下完,OER,吸附能,决速步骤,菲尔,dec,能垒,eV,调谐,电子结构,催化剂设计,反应过程,配位,RDS,自由能,电催化剂,磷化镍
AB值:
0.280702
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。