首站-论文投稿智能助手
典型文献
基于KNN改进的BP神经网络的油浸式配电变压器故障诊断
文献摘要:
电力变压器一直是高压变电站系统和中小型发电厂使用的一项重要辅助电力设备,假如其工作一旦设备发生故障,系统将不能稳定的正常工作.同时,伴随着变压器电气等级的上升,变压器的价格就越贵重,如果因为故障受到损坏,对我国的经济社会的发展造成不可挽回的后果.由于科技的进步,传统的检测方法精度已经无法满足判别油浸式变压器故障的安全要求,因此需要一个安全性和可靠性高的便携的检测变压器故障的保护方法.从BP神经网络出发,构造了 BP模型并对之训练仿真,得到识别率为60%.为了进一步提高故障识别率和精度,引入深度学习的概念,阐述了 KNN网络的基本原理,以及其网络的结构和工作机制,据此又设计了一个KNN网络的模型,并使用DGA数据做好网络训练和结果剖析,识别率可达到90%.接着对两个模型做了对比,发现KNN优于BP神经网络.
文献关键词:
变压器故障诊断;BP神经网络;KNN网络
作者姓名:
翟智勇
作者机构:
安徽理工大学电气与信息工程学院,安徽淮南,232001
文献出处:
引用格式:
[1]翟智勇-.基于KNN改进的BP神经网络的油浸式配电变压器故障诊断)[J].电子测试,2022(19):66-68
A类:
B类:
KNN,油浸式配电变压器,变压器故障诊断,电力变压器,高压变电站,变电站系统,中小型,发电厂,电力设备,假如,如其,就越,贵重,果因,可挽回,油浸式变压器,安全要求,安全性和可靠性,可靠性高,保护方法,训练仿真,故障识别率,DGA,网络训练
AB值:
0.32746
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。