典型文献
结合注意力机制的知识感知推荐算法
文献摘要:
知识图谱在推荐系统中的应用越来越受重视,可以有效地解决推荐系统中存在的数据稀疏性和冷启动问题.但现有的基于路径和基于嵌入的知识感知推荐算法在合并知识图谱中的实体来表示用户时,并没有考虑到实体对于用户的重要性并不相同,推荐结果会受到无关实体的影响.针对现有方法的局限性,提出了一种新的结合注意力机制的知识感知推荐算法,并给出一种将知识图谱合并到推荐系统中的端到端框架.由用户的历史点击项在知识图谱上扩展出多个实体集,通过注意力机制来计算用户的偏好分布,据此预测最终的点击概率.通过在两个真实的公共数据集上与传统的推荐算法进行对比实验,结果表明,该方法在多个通用指标(例如AUC、ACC和Recall@top-K)的评估下均取得了明显提升.
文献关键词:
推荐系统;知识图谱;注意力机制;实体传播
中图分类号:
作者姓名:
张昕;刘思远;徐雁翎
作者机构:
辽宁大学 信息学院,沈阳 110036
文献出处:
引用格式:
[1]张昕;刘思远;徐雁翎-.结合注意力机制的知识感知推荐算法)[J].计算机工程与应用,2022(09):168-174
A类:
实体传播
B类:
注意力机制,知识感知,推荐算法,推荐系统,受重,数据稀疏性,冷启动问题,并不相同,并到,端到端,点击,公共数据,ACC,Recall,top
AB值:
0.259474
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。