首站-论文投稿智能助手
典型文献
数据与模型混合驱动的区域综合能源系统双层优化调度决策方法
文献摘要:
在高比例可再生能源接入以及多种能源耦合网络快速发展的背景下,基于模型驱动的传统调度方法将难以满足区域综合能源系统实时优化调度决策的速度需求.因此,研究具有高智能性和快速决策能力的智能调度决策方法具有重要的意义.该文提出了一种数据与模型混合驱动的区域综合能源双层优化调度决策方法.上层使用混合整数线性规划(mix integer linear programming,MILP)求解得到日前调度计划,为日内滚动优化提供参考,下层将卷积神经网络(convolutional neural network,CNN)与门控循环单元(gated recurrent unit,GRU)相结合进行日内滚动优化决策,使用自适应功率修正模型对其输出进行微调得到精确解.最后,通过算例分析验证了本文所提方法的有效性.
文献关键词:
深度学习;区域综合能源系统;数据与模型混合驱动;人工智能
作者姓名:
王志杨;张靖;何宇;古庭赟;李博文
作者机构:
贵州大学电气工程学院,贵州省贵阳市550025;贵州电网有限责任公司电力科学研究院,贵州省贵阳市550002
文献出处:
引用格式:
[1]王志杨;张靖;何宇;古庭赟;李博文-.数据与模型混合驱动的区域综合能源系统双层优化调度决策方法)[J].电网技术,2022(10):3797-3809
A类:
数据与模型混合驱动
B类:
区域综合能源系统,双层优化,调度决策,决策方法,高比例可再生能源接入,多种能源,能源耦合,耦合网络,基于模型,模型驱动,调度方法,实时优化调度,高智能,智能性,速决,决策能力,智能调度,混合整数线性规划,mix,integer,linear,programming,MILP,日前调度,调度计划,滚动优化,convolutional,neural,network,门控循环单元,gated,recurrent,unit,GRU,优化决策,功率修正,修正模型,出进,微调,调得,精确解,算例分析,分析验证
AB值:
0.387942
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。