典型文献
应用人工智能识别超广角眼底照相多病种的初步研究
文献摘要:
目的:构建一个小样本超广角眼底照相(UWFI)多疾病分类人工智能模型,初步探究人工智能对UWFI多病种分类任务的能力。方法:回顾性研究。2016年至2021年于武汉大学人民医院眼科就诊并行UWFI检查的1 123例患者的1 608张图像用于UWFI多疾病分类人工智能模型构建。其中,糖尿病视网膜病变(DR)、视网膜静脉阻塞(RVO)、病理性近视(PM)、视网膜脱离(RD)、正常眼底图像分别为320、330、319、268、371张。来自天津医科大学眼科医院106例患者的135张图像作为外部测试集。选取EfficientNet-B7作为主干网络,对纳入的UWFI图像进行分类分析。使用受试者工作特征曲线及曲线下面积(AUC)、灵敏度、特异性、准确率评估分类模型在测试集上的表现,所有数据均使用数值及95%可信区间(
CI)表达。将数据集在网络模型ResNet50、ResNet101上进行训练,并在外部测试集上进行测试,对比观察EfficientNet与上述两种模型的性能。
结果:UWFI多疾病分类人工智能模型在内部、外部测试集上的总分类准确率分别为92.57% (95%
CI 91.13%~92.92%)、88.89% (95%
CI 88.11%~90.02%)。其中,正常眼底分别为96.62%、92.59%,DR分别为95.95%、95.56%,RVO分别为96.62%、98.52%,PM分别为98.65%、97.04%,RD分别为97.30%、94.07%。在内部、外部测试集上的平均AUC分别为0.993、0.983。其中,正常眼底分别为0.994、0.939,DR分别为0.999、0.995,RVO分别为0.985、1.000,PM分别为0.991、0.993,RD分别为0.995、0.990。内部、外部测试集上EfficientNet性能均较ResNet50、ResNet101模型更佳。
结论:初步构建的小样本UWFI多疾病分类人工智能模型对常见眼底疾病的分类水平较高,可能具有辅助临床筛查及诊断的价值。
文献关键词:
视网膜疾病;人工智能;深度学习;超广角眼底照相
中图分类号:
作者姓名:
孙功鹏;王晓玲;徐立璋;李嫦;王雯钰;易佐慧子;郑红梅;李志清;陈长征
作者机构:
武汉大学人民医院眼科中心, 武汉 430060;武汉爱眼帮科技有限公司, 武汉 430073;天津医科大学眼科医院、眼视光学院、眼科研究所 天津市视网膜功能与疾病重点实验室 天津市眼科学与视觉科学国际联合研究中心, 天津 300384
文献出处:
引用格式:
[1]孙功鹏;王晓玲;徐立璋;李嫦;王雯钰;易佐慧子;郑红梅;李志清;陈长征-.应用人工智能识别超广角眼底照相多病种的初步研究)[J].中华眼底病杂志,2022(02):132-138
A类:
超广角眼底照相,UWFI
B类:
人工智能识别,多病,病种,小样本,疾病分类,人工智能模型,分类任务,回顾性研究,武汉大学,糖尿病视网膜病变,DR,视网膜静脉阻塞,RVO,病理性近视,PM,视网膜脱离,RD,眼底图像,天津医科大学,眼科医院,测试集,EfficientNet,B7,主干网络,分类分析,受试者工作特征曲线,评估分类,分类模型,可信区间,ResNet50,ResNet101,分类准确率,眼底疾病,临床筛查,视网膜疾病
AB值:
0.216935
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。