典型文献
应用贝叶斯网络建立孤立性肺结节良恶性预测模型
文献摘要:
[目的]探讨基于贝叶斯网络建立孤立性肺结节良恶性预测模型的临床价值.[方法]从医院数据管理平台收集2018年12月至2021年10月山西医科大学第一医院576例孤立性肺结节患者的人口学资料、临床资料及影像学资料.根据患者的病理结果分为良恶性两组,其中458例肺癌,118例肺良性疾病.分析采用SPSS 26.0软件进行卡方检验,并进行共线性诊断分析,进行模型变量的初步筛选.使用Clementine12.0软件进行TAN贝叶斯网络模型的建立.[结果]单因素初步分析显示肺癌与肺良性疾病组间年龄、呼吸系统疾病既往史、个人恶性肿瘤史、结节直径、部位、钙化、分叶征、胸膜凹陷、血管集束征、边缘和结节的密度均有统计学差异(P<0.05).将上述11个变量输入建立TAN贝叶斯网络,其准确率为91.27%、灵敏度为92.23%、特异度为86.96%、阳性预测值为96.94%、阴性预测值为71.43%.[结论]应用贝叶斯网络构建的肺结节良恶性的预测模型具有较好的预测能力,并且能够更加直观地描述疾病与因素间复杂的网络风险机制.
文献关键词:
肺结节;贝叶斯网络;诊断
中图分类号:
作者姓名:
万海玉;李军;王博;张小艳;王旭春;郑绘霞
作者机构:
山西医科大学第一临床医学院,山西 太原030001;山西白求恩医院,山西 太原030032;山西医科大学公共卫生学院,山西太原030001;山西医科大学第一医院,山西太原030001
文献出处:
引用格式:
[1]万海玉;李军;王博;张小艳;王旭春;郑绘霞-.应用贝叶斯网络建立孤立性肺结节良恶性预测模型)[J].肿瘤学杂志,2022(05):380-384
A类:
B类:
孤立性肺结节,肺结节良恶性,临床价值,医院数据,数据管理平台,人口学,病理结果,肺良性疾病,卡方检验,共线性,诊断分析,初步筛选,Clementine12,TAN,贝叶斯网络模型,初步分析,呼吸系统疾病,钙化,分叶征,胸膜,凹陷,血管集束征,统计学差异,阳性预测值,阴性预测值,网络构建,预测能力,网络风险,风险机制
AB值:
0.274132
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。