典型文献
耦合用户公共特征的单类协同过滤推荐算法
文献摘要:
将显式特征与隐式反馈相结合是提高单类协同过滤(OCCF)推荐准确性的常用方法.但目前的研究一般是直接将原始显式特征或交叉特征集成到OCCF模型中,因其难以判断哪些显式特征是真正重要的,故很难获得显著的性能改进.基于此,提出了一种耦合用户公共特征的单类协同过滤推荐算法(UCC-OCCF).首先,建立基于邻居的共同偏好表示网络(NB-CPR),学习与当前用户具有相似显式特征的邻居用户和某一类项目之间的交互关系,间接利用显式特征以获得共同偏好;然后,建立个人深度潜在因素表示网络(DLFR),使用深度神经网络学习用户-项目之间的潜在因素,从而得到当前用户与项目之间的交互概率;最后,基于邻居的共同偏好表示网络与个人深度潜在因素表示网络进行联合训练,从而将用户公共特征耦合到单类协同过滤推荐模型中,以提高推荐准确度.在公共数据集MovieLens 100K、MovieLens 1M和MyAnimelist上的实验结果表明,UCC-OCCF可以显著提高OCCF的推荐准确性.
文献关键词:
单类协同过滤(OCCF);深度学习;共同偏好;隐式反馈;显式特征
中图分类号:
作者姓名:
张全贵;胡嘉燕;王丽
作者机构:
辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105
文献出处:
引用格式:
[1]张全贵;胡嘉燕;王丽-.耦合用户公共特征的单类协同过滤推荐算法)[J].计算机科学与探索,2022(03):637-648
A类:
OCCF,共同偏好,DLFR,MyAnimelist
B类:
协同过滤推荐算法,显式特征,隐式反馈,常用方法,交叉特征,特征集成,性能改进,UCC,邻居,偏好表示,NB,CPR,类项,交互关系,使用深度,深度神经网络,神经网络学习,习用,联合训练,合到,推荐模型,公共数据,MovieLens,100K,1M
AB值:
0.250565
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。