典型文献
基于生成模型的视频图像重建方法综述
文献摘要:
基于像素相关性的传统视频压缩技术性能提升空间受限,语义压缩成为视频压缩编码的新方向,视频图像重建是语义压缩编码的关键环节.首先介绍了针对传统编码优化的视频图像重建方法,包括如何利用深度学习提升预测精度和利用超分辨率技术增强重建质量;其次讨论了基于变分自编码器、基于生成对抗网络、基于自回归模型和基于Transformer模型的视频图像重建方法,并根据图像的不同语义表征对模型进行分类,对比了各类方法的优缺点及其适用场景;最后总结了现有视频图像重建存在的问题,并进一步展望研究方向.
文献关键词:
视频压缩编码;图像重建;生成对抗网络;变分自编码器;Transformer模型
中图分类号:
作者姓名:
王延文;雷为民;张伟;孟欢;陈新怡;叶文慧;景庆阳
作者机构:
东北大学计算机科学与工程学院,辽宁 沈阳 110169
文献出处:
引用格式:
[1]王延文;雷为民;张伟;孟欢;陈新怡;叶文慧;景庆阳-.基于生成模型的视频图像重建方法综述)[J].通信学报,2022(09):194-208
A类:
B类:
生成模型,视频图像,图像重建,重建方法,方法综述,像素相关性,压缩技术,技术性能,性能提升,提升空间,空间受限,压缩成,视频压缩编码,统编,超分辨率,重建质量,变分自编码器,生成对抗网络,自回归模型,Transformer,语义表征,适用场景
AB值:
0.252151
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。