首站-论文投稿智能助手
典型文献
基于DDPG的三维重建模糊概率点推理
文献摘要:
单视图物体三维重建是一个长期存在的具有挑战性的问题.为了解决具有复杂拓扑结构的物体以及一些高保真度的表面细节信息仍然难以准确进行恢复的问题,本文提出了一种基于深度强化学习算法深度确定性策略梯度(Deep de-terministic policy gradient,DDPG)的方法对三维重建中模糊概率点进行再推理,实现了具有高保真和丰富细节的单视图三维重建.本文的方法是端到端的,包括以下四个部分:拟合物体三维形状的动态分支代偿网络的学习过程,聚合模糊概率点周围点的邻域路由机制,注意力机制引导的信息聚合和基于深度强化学习算法的模糊概率调整.本文在公开的大规模三维形状数据集上进行了大量的实验证明了本文方法的正确性和有效性.本文提出的方法结合了强化学习和深度学习,聚合了模糊概率点周围的局部信息和图像全局信息,从而有效地提升了模型对复杂拓扑结构和高保真度的细节信息的重建能力.
文献关键词:
三维重建;强化学习;深度学习;注意力机制;信息聚合
作者姓名:
李雷;徐浩;吴素萍
作者机构:
宁夏大学信息工程学院 银川750021
文献出处:
引用格式:
[1]李雷;徐浩;吴素萍-.基于DDPG的三维重建模糊概率点推理)[J].自动化学报,2022(04):1105-1118
A类:
terministic
B类:
DDPG,三维重建,模糊概率,单视图,长期存在,复杂拓扑,拓扑结构,高保真度,细节信息,深度强化学习算法,深度确定性策略梯度,Deep,de,policy,gradient,端到端,代偿,学习过程,邻域,路由机制,注意力机制,信息聚合,局部信息,和图像,全局信息
AB值:
0.252797
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。