首站-论文投稿智能助手
典型文献
一种量子条件生成对抗网络算法
文献摘要:
量子生成对抗网络是量子机器学习算法领域研究热点之一,但其生成过程具有较大的随机性,不太适用于现实场景.为了解决该问题,提出了一种生成过程可控的量子条件生成对抗网络(Quantum Conditional Generative Adversarial Network,QCGAN)算法,其中条件信息采用one-hot形式进行多粒子W态编码,并通过向生成器和判别器输入条件信息达到稳定模型生成过程的目的.性能评估表明,与经典GAN、CGAN相比,本算法可生成离散数据,且将时间复杂度从O(N 2)降为O(N);与带条件约束的量子生成对抗网络QuGAN相比,QCGAN消耗更少的量子资源.最后,以BAS(3,3)数据集和量子混合态生成为例,选用PennyLane平台进行仿真实验,结果表明QCGAN算法经过训练可有效收敛到Nash均衡点,进而验证了算法的实验可行性.
文献关键词:
量子生成对抗网络;条件信息;W态编码;参数化量子电路
作者姓名:
刘文杰;赵胶胶;张颖;葛业波
作者机构:
南京信息工程大学计算机与软件学院,江苏南京210044;数字取证教育部工程研究中心,江苏南京210044;南京信息工程大学自动化学院,江苏南京210044
文献出处:
引用格式:
[1]刘文杰;赵胶胶;张颖;葛业波-.一种量子条件生成对抗网络算法)[J].电子学报,2022(07):1586-1593
A类:
量子生成对抗网络,QCGAN,QuGAN,PennyLane,参数化量子电路
B类:
条件生成对抗网络,网络算法,量子机器学习,机器学习算法,生成过程,随机性,现实场景,Quantum,Conditional,Generative,Adversarial,Network,中条,条件信息,one,hot,多粒,生成器,判别器,输入条,稳定模型,模型生成,性能评估,评估表,时间复杂度,降为,BAS,量子混合态,法经,经过训练,Nash,均衡点
AB值:
0.318506
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。