典型文献
融合通道层注意力机制的多支路卷积网络抑郁症识别
文献摘要:
目的 抑郁症是一种常见的情感性精神障碍,会带来诸多情绪和身体问题.在实践中,临床医生主要通过面对面访谈并结合自身经验评估抑郁症的严重程度.这种诊断方式具有较强的主观性,整个过程比较耗时,且易造成误诊、漏诊.为了客观便捷地评估抑郁症的严重程度,本文围绕面部图像研究深度特征提取及其在抑郁症自动识别中的应用,基于人脸图像的全局和局部特征,构建一种融合通道层注意力机制的多支路卷积网络模型,进行抑郁症严重程度的自动识别.方法 首先从原始视频提取图像,使用多任务级联卷积神经网络检测人脸关键点.在对齐后分别裁剪出整幅人脸图像和眼睛、嘴部区域图像,然后将它们分别送入与通道层注意力机制结合的深度卷积神经网络以提取全局特征和局部特征.在训练时,将训练图像进行标准化预处理,并通过翻转、裁剪等操作增强数据.在特征融合层将3个支路网络提取的特征拼接在一起,最后输出抑郁症严重程度的分值.结果 在AVEC2013(The Continuous Audio/Visual Emotion and Depression Recognition Challenge)抑郁症数据库上平均绝对误差为6.74、均方根误差为8.70,相较于Baseline分别降低4.14和4.91;在AVEC2014抑郁症数据库上平均绝对误差和均方根误差分别为6.56和8.56,相较于Baseline分别降低2.30和2.30.同时,相较于其他抑郁症识别方法,本文方法取得了最低的平均绝对误差和均方根误差.结论 本文方法能够以端到端的形式实现抑郁症的自动识别,将特征提取和抑郁症严重程度识别在统一框架下进行和调优,学习到的多种视觉特征更加具有鉴别性,实验结果表明了该算法的有效性和可行性.
文献关键词:
抑郁症识别;通道层注意力机制;深度卷积神经网络;特征融合;空间权重
中图分类号:
作者姓名:
孙浩浩;邵珠宏;尚媛园;孙晓妮;胡强;孔佑勇
作者机构:
首都师范大学信息工程学院,北京 100048;上海交通大学医学院附属精神卫生中心,上海 200030;上海交通大学生物医学工程学院,上海 200240;东南大学计算机科学与工程学院,南京 210096
文献出处:
引用格式:
[1]孙浩浩;邵珠宏;尚媛园;孙晓妮;胡强;孔佑勇-.融合通道层注意力机制的多支路卷积网络抑郁症识别)[J].中国图象图形学报,2022(11):3292-3302
A类:
通道层注意力机制,AVEC2013,AVEC2014
B类:
合通,多支,支路,卷积网络,抑郁症识别,情感性,精神障碍,多情,身体问题,临床医生,面对面,面访,身经,诊断方式,主观性,误诊,漏诊,面部图像,图像研究,研究深度,深度特征提取,自动识别,人脸图像,全局和局部特征,抑郁症严重程度,多任务级联卷积神经网络,神经网络检测,人脸关键点,对齐,别裁,裁剪,剪出,整幅,眼睛,嘴部,送入,深度卷积神经网络,全局特征,训练图像,标准化预处理,特征融合,路网,特征拼接,接在,Continuous,Audio,Visual,Emotion,Depression,Recognition,Challenge,平均绝对误差,Baseline,端到端,一框,调优,视觉特征,空间权重
AB值:
0.358243
相似文献
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。